
Adding basic external script in Jira
Last Modified on 02/17/2026 1:13 pm EST

 This article shows an example of how you can create an example groovy file, add a script, and
call it in the Sync Rules.

1. Make sure you have the scripts directory. The directory location depends on the issue
tracking platform.Custom scripts can only be deployed on Jira Server/Datacenter and nodes
which are deployed through the docker deployment approach.

Platform location

Docker
based

/opt/<nodename>/data/scripts

There could be one of the following values instead of <nodename> :

snownode for Exalate for ServiceNow.

adnode for Exalate for Azure DevOps

Jira Cloud Jira Cloud, just as any other cloud node, supports a set of specific scripts.
Custom scripts cannot be deployed in this environment.

2. Create BasicFieldSync.groovy file with the following code, and store it in the right
location on your server. There is no need to restart instance/add-on to enable the external
script.

class BasicFieldSync
{
 static receive(issue,
 replica,
 nodeHelper,
 commentHelper,
 attachmentHelper) {

 issue.summary = replica.summary
 issue.description = replica.description
 issue.assignee = nodeHelper.getUserByUsername(replica.assignee?.username)
 issue.reporter = nodeHelper.getUserByUsername(replica.reporter?.username)
 issue.labels = replica.labels
 issue.comments = commentHelper.mergeComments(issue, replica)
 issue.attachments = attachmentHelper.mergeAttachments(issue, replica)
 }
}

3. Call the BasicFieldSync.groovy script from the Sync Rules.

Replace the script in the outgoing sync rules (create and change processors) as below:

Existing script

issue.summary = replica.summary
issue.description = replica.description
issue.assignee = nodeHelper.getUserByUsername(replica.assignee?.username)
issue.reporter = nodeHelper.getUserByUsername(replica.reporter?.username)
issue.labels = replica.labels
issue.comments = commentHelper.mergeComments(issue, replica)
issue.attachments = attachmentHelper.mergeAttachments(issue, replica)

New script

BasicFieldSync.receive(
 issue,
 replica,
 nodeHelper,
 commentHelper,
 attachmentHelper
)

Now you have one file with basic synchronization rules. You can reuse it in outgoing sync
processors: new issues(create processor) and for existing issues(change processor). If you add
new code into the BasicFieldSync.groovy, it is automatically executed in your incoming sync
rules (create and change processors).

Product

About Us �

Release History �

Glossary �

API Reference �

Security �

Pricing and Licensing �

Resources

Subscribe for a weekly Exalate hack �

Academy �

Blog �

YouTube Channel �

Ebooks �

Still need help?

Join our Community �

Visit our Service Desk �

Find a Partner �

https://exalate.com/who-we-are
http://docs.exalate.com/docs/release-history
http://docs.exalate.com/docs/glossary
http://docs.exalate.com/docs/exalate-api-reference-documentation
http://docs.exalate.com/docs/security
http://docs.exalate.com/docs/pricing-licensing
https://exalate.com/hack/?utm_campaign=ExalateHack&utm_medium=docs&utm_source=docs_home_page
https://exalate.com/academy
https://exalate.com/blog
https://www.youtube.com/@exalate-integration
https://exalate.com/ebooks-and-whitepapers/
https://community.exalate.com
https://exalate.atlassian.net/servicedesk/customer/portal/5
https://exalate.com/partners

