How to Sync Versions in Jira On-premise

Last Modified on 02/11/2026 9:29 am EST

This article shows how to sync fix versions between Jira instances.

Jira version is an object that includes the following elements:

= version name
= version start date
= version release date

= version description

Basic versions synchronization involves receiving versions from a remote Jira instance. Usually,
these versions don't exist on your local Jira. Exalate provides a way to create versions from the
scripts to handle this situation. To create a new version on your system when necessary use
nodeHelper.createVersion. The example below shows how you can set up such behavior.

Source Side
Outgoing sync
send fix versions

//send the fix versions set on a synced issue
replica.fixVersions = issue.fixVersions
replica.affectedVersions = issue.affectedVersions

Destination Side
Incoming sync

Create the versions that do not exist on your side:

// for the create processor, be sure that the project is set to the issue variable before running the following code
issue.projectKey = "Foo" //Included only on create processor

// assign fix versions from JIRA A to JIRA B
issue.fixVersions = replica
fixVersions
// ensure that all the fixVersions are available on B
.collect { v -> nodeHelper.createVersion(issue, v.name, v.description) }
// assign affected versions from JIRA A to JIRA B
issue.affectedVersions = replica
.affectedVersions
.collect { v -> nodeHelper.createVersion(issue, v.name, v.description) }

If you do not want exalate to create new versions but just use existing ones that match the other
side versions:


https://exalatedocs.knowledgeowl.com/docs/createversion-10354878

// for the create processor, be sure that the project is set to the issue variable before running the following code
issue.projectkey = "Foo" //Included only on create processor

// assign fix versions from JIRA A to JIRA B
def project = nodeHelper.getProject(issue.projectKey)
issue.fixVersions = replica
fixVersions
// ensure that all the fixVersions are available on B
.collect { v -> nodeHelper.getVersion(v.name, project) }
findAll{it '= null}
// assign affected versions from JIRA A to JIRA B
issue.affectedVersions = replica
.affectedVersions
.collect { v -> nodeHelper.getVersion(v.name, project) }
findAll{it '= null}

If you want to synchronize version start date, release date and description you can use the
external script versions.groovy, which has been developed specifically for such cases.
Product
About Us [2
O N cTcHES i RAGE
Shrate
API Reference 2
Reshingtion Side
Pricing and Licensing @
Resources
Subscribe for a weekly Exalate hack &
Academy [
Blog
YouTube Channel [
Ebooks [
Still need help?
Join our Community
Visit our Service Desk [
Find a Partner [


https://exalatedocs.knowledgeowl.com/docs/versionsgroovy
http://docs.exalate.com/#SourceSide0
http://docs.exalate.com/#DestinationSide1
https://exalate.com/who-we-are
http://docs.exalate.com/docs/release-history
http://docs.exalate.com/docs/glossary
http://docs.exalate.com/docs/exalate-api-reference-documentation
http://docs.exalate.com/docs/security
http://docs.exalate.com/docs/pricing-licensing
https://exalate.com/hack/?utm_campaign=ExalateHack&utm_medium=docs&utm_source=docs_home_page
https://exalate.com/academy
https://exalate.com/blog
https://www.youtube.com/@exalate-integration
https://exalate.com/ebooks-and-whitepapers/
https://community.exalate.com
https://exalate.atlassian.net/servicedesk/customer/portal/5
https://exalate.com/partners

