
How to Sync Issue User Fields in Jira On-premise
Last Modified on 02/11/2026 9:29 am EST

This article describes how to sync Jira issue fields, that include users.

Jira Issue Fields that include a User Object

There are several issue fields, which include user information, you can sync all these fields using
the Exalate app.

issue creator
issue assignee
issue reporter
comment author
custom field of type user

Despite the fact that multiple Jira instances have different users set, you can sync users
information with the help of the Exalate nodeHelper methods. To handle user sync you can use
following helpers:

Jira on-premise Jira Cloud

getUser
getUserByUsername
getUserByEmail
getUserByFullName

getUser
getUserByEmail (only if the user email is not hidden in
the Atlassian account settings)
getUserByFullName (only if the user email is not hidden
in the Atlassian account settings)

Check some examples of the user fields sync below.

Source Side

Add the code below to the Outgoing sync to send fields like issue creator, issue assignee, issue
reporter

replica.assignee = issue.assignee
replica.reporter = issue.reporter
replica.creator = issue.creator

Destination Side

Depending on whether the destination side is Jira Cloud or Jira on-premise you need to use
different nodeHelper methods. Add the code below to the Incoming sync to add received user
fields data from the source side.

issue creator

https://exalatedocs.knowledgeowl.com/docs/nodehelper-in-script-helpers
https://exalatedocs.knowledgeowl.com/docs/getuser
https://exalatedocs.knowledgeowl.com/docs/getuserbyusername
https://exalatedocs.knowledgeowl.com/docs/getuserbyemail
https://exalatedocs.knowledgeowl.com/docs/getuserbyfullname-19628493
https://exalatedocs.knowledgeowl.com/docs/getuser
https://exalatedocs.knowledgeowl.com/docs/getuserbyemail
https://exalatedocs.knowledgeowl.com/docs/getuserbyfullname-19628493

Jira on-premise to Jira on-premise case

 issue.creator = nodeHelper.getUserByUsername(replica.creator?.username)

Jira on-premise to Jira Cloud case

 issue.creator = nodeHelper.getUserByEmail(replica.creator?.email)

or (if a Cloud user's email is hidden for Exalate)

final def userMapping = [
 "admin@admin.com" : "557358:bda57a72g56a9-4219-9c29-7d666481388f",
]
 issue.creator = nodeHelper.getUser(userMapping[replica.creator?.email])

Jira Cloud to Jira on-premise case

 issue.creator = nodeHelper.getUserByEmail(replica.creator?.email)

or (if a Cloud user's email is hidden for Exalate)

final def userMapping = [
 "557358:bda57a72g56a9-4219-9c29-7d666481388f" : "admin@admin.com"
]
 issue.creator = nodeHelper.getUserByEmail(userMapping[replica.creator?.key])

Jira Cloud to Jira Cloud case

 issue.creator = nodeHelper.getUser(replica.creator?.key)

issue assignee

Jira on-premise to Jira on-premise case

issue.assignee = nodeHelper.getUserByUsername(replica.assignee?.username)

Jira on-premise to Jira Cloud case

 issue.assignee = nodeHelper.getUserByEmail(replica.assignee?.email)

or (if a Cloud user's email is hidden for Exalate)

final def userMapping = [
 "admin@admin.com" : "557358:bda57a72g56a9-4219-9c29-7d666481388f",
]
 issue.assignee = nodeHelper.getUser(userMapping[replica.assignee?.email])

Jira Cloud to Jira on-premise case

 issue.assignee = nodeHelper.getUserByEmail(replica.assignee?.email)

or (if a Cloud user's email is hidden for Exalate)

final def userMapping = [
 "557358:bda57a72g56a9-4219-9c29-7d666481388f" : "admin@admin.com"
]
 issue.assignee = nodeHelper.getUserByEmail(userMapping[replica.assignee?.key])

Jira Cloud to Jira Cloud case

issue.assignee = nodeHelper.getUser(replica.assignee?.key)

issue reporter

Jira on-premise to Jira on-premise case

issue.reporter = nodeHelper.getUserByUsername(replica.reporter?.username)

Jira on-premise to Jira Cloud case

 issue.reporter = nodeHelper.getUserByEmail(replica.reporter?.email)

or (if a Cloud user's email is hidden for Exalate)

final def userMapping = [
 "admin@admin.com" : "557358:bda57a72g56a9-4219-9c29-7d666481388f",
]
 issue.reporter = nodeHelper.getUser(userMapping[replica.reporter?.email])

Jira Cloud to Jira on-premise case

 issue.reporter = nodeHelper.getUserByEmail(replica.reporter?.email)

or (if a Cloud user's email is hidden for Exalate)

final def userMapping = [
 "557358:bda57a72g56a9-4219-9c29-7d666481388f" : "admin@admin.com"
]
 issue.reporter = nodeHelper.getUserByEmail(userMapping[replica.reporter?.key])

Jira Cloud to Jira Cloud case

issue.reporter = nodeHelper.getUser(replica.reporter?.key)

comment author

Jira on-premise to Jira on-premise case

issue.comments = commentHelper.mergeComments(
 issue,
 replica,
 {
 it.executor = nodeHelper.getUserByUsername(it.author?.username);it
 }
)

Jira on-premise to Jira Cloud case

issue.comments = commentHelper.mergeComments(
 issue,
 replica,
 {
 it.executor = nodeHelper.getUserByEmail(it.author?.email);it
 }
)

or (if a Cloud user's email is hidden for Exalate)

final def userMapping = [
 "admin@admin.com" : "557358:bda57a72g56a9-4219-9c29-7d666481388f",
]

issue.comments = commentHelper.mergeComments(
 issue,
 replica,
 {
 it.executor = nodeHelper.getUser(userMapping[it.author?.email]);it
 }
)

Jira Cloud to Jira on-premise case

issue.comments = commentHelper.mergeComments(
 issue,
 replica,
 {
 it.executor = nodeHelper.getUserByEmail(it.author?.email);it
 }
)

or (if a Cloud user's email is hidden for Exalate)

final def userMapping = [
 "557358:bda57a72g56a9-4219-9c29-7d666481388f" : "admin@admin.com"
]

issue.comments = commentHelper.mergeComments(
 issue,
 replica,
 {
 it.executor = nodeHelper.getUserByEmail(userMapping[it.author?.key]);it
 }
)

Jira Cloud to Jira Cloud case

issue.comments = commentHelper.mergeComments(
 issue,
 replica,
 {
 it.executor = nodeHelper.getUser(it.author?.key);it
 }
)

custom field of type user

Jira on-premise to Jira on-premise case

 issue.customFields."Cool User"?.value =
 nodeHelper.getUserByUsername(replica.customFields."Cool User"?.value?.username)

Jira on-premise to Jira Cloud case

issue.customFields."Cool User"?.value =
 nodeHelper.getUserByEmail(replica.customFields."Cool User"?.value?.email)

or (if a Cloud user's email is hidden for Exalate)

final def userMapping = [
 "admin@admin.com" : "557358:bda57a72g56a9-4219-9c29-7d666481388f",
]
issue.customFields."Cool User"?.value =
 nodeHelper.getUser(userMapping[replica.customFields."Cool User"?.value?.email])

Jira Cloud to Jira on-premise case

issue.customFields."Cool User"?.value =
 nodeHelper.getUserByEmail(replica.customFields."Cool User"?.value?.email)

or (if a Cloud user's email is hidden for Exalate)

final def userMapping = [
 "557358:bda57a72g56a9-4219-9c29-7d666481388f" : "admin@admin.com"
]
issue.customFields."Cool User"?.value =
 nodeHelper.getUserByEmail(userMapping[replica.customFields."Cool User"?.value?.key])

Jira Cloud to Jira Cloud case

issue.customFields."Cool User"?.value = nodeHelper.getUser(replica.customFields."Cool User"?.value?.key)

Custom Handling

You can define your own logic for the synchronization of any user field using the helper methods
and the power of Groovy scripting. Check the examples below:

You can get a user on your side using remote user data such as username, email, accountId
or set a default user.

The example below shows how you can try getting a user by remote username or email or set
a default user if not found.

def localReporter = nodeHelper.getUserByUsername(replica.reporter?.username)
if(!localReporter){
 localReporter = nodeHelper.getUserByEmail(replica.reporter?.email)
}
if(!localReporter){
 localReporter = nodeHelper.getUserByEmail("default user email")
}
issue.reporter = localReporter

Get a user by mapping remote account Id to local email or set a default user if not found (if
the source side is Jira Cloud)

final def userMapping = [
 "557358:bda57a72g56a9-4219-9c29-7d666481388f" : "admin@admin.com"
]
def localReporter = nodeHelper.getUserByEmail(userMapping[replica.reporter?.key])
if(!localReporter){
 localReporter = nodeHelper.getUserByEmail("default user email")
}
issue.reporter = localReporter

User object has "active" property in Jira, so you can also check whether the user is active or
not and use this criteria in the sync rules.

The example below shows how to determine whether the assignee user exists in the
system and his account is active, in other cases set the default user admin.

Jira on-premise to Jira on-premise case

issue.assignee = nodeHelper.getUserByUsername(replica.assignee?.username)?.active ?
 nodeHelper.getUserByUsername(replica.assignee?.username) :
 nodeHelper.getUserByUsername("admin")

Jira on-premise to Jira Cloud case

issue.assignee = nodeHelper.getUserByEmail(replica.assignee?.email)?.active ?
 nodeHelper.getUserByEmail(replica.assignee?.email) :
 nodeHelper.getUserByEmail("default user email")

or (if a Cloud user's email is hidden for Exalate)

final def userMapping = [
 "admin@admin.com" : "557358:bda57a72g56a9-4219-9c29-7d666481388f",
]
issue.assignee = nodeHelper.getUser(userMapping[replica.assignee?.email])?.active ?
 nodeHelper.getUser(userMapping[replica.assignee?.email]) :
 nodeHelper.getUser("default user account ID")

Jira Cloud to Jira on-premise case

issue.assignee = nodeHelper.getUserByEmail(replica.assignee?.email)?.active ?
 nodeHelper.getUserByEmail(replica.assignee?.email) :
 nodeHelper.getUserByUsername("admin")

or (if a Cloud user's email is hidden for Exalate)

final def userMapping = [
 "557358:bda57a72g56a9-4219-9c29-7d666481388f" : "admin@admin.com"
]
issue.assignee = nodeHelper.getUserByEmail(userMapping[replica.assignee?.key])?.active ?
 nodeHelper.getUserByEmail(userMapping[replica.assignee?.key]) :
 nodeHelper.getUserByUsername("admin")

Jira Cloud to Jira Cloud case

issue.assignee = nodeHelper.getUser(replica.assignee?.key)?.active ?
 nodeHelper.getUser(replica.assignee?.key) :
 nodeHelper.getUser("default user account ID")

ON THIS PAGE

Jira Issue Fields that include a User Object

Source Side

Destination Side

Custom Handling

Product

About Us �

Release History �

Glossary �

API Reference �

Security �

Pricing and Licensing �

Resources

Subscribe for a weekly Exalate hack �

Academy �

Blog �

YouTube Channel �

Ebooks �

Still need help?

Join our Community �

Visit our Service Desk �

Find a Partner �

http://docs.exalate.com/#JiraIssueFieldsthatincludeaUserObject0
http://docs.exalate.com/#SourceSide1
http://docs.exalate.com/#DestinationSide2
http://docs.exalate.com/#CustomHandling3
https://exalate.com/who-we-are
http://docs.exalate.com/docs/release-history
http://docs.exalate.com/docs/glossary
http://docs.exalate.com/docs/exalate-api-reference-documentation
http://docs.exalate.com/docs/security
http://docs.exalate.com/docs/pricing-licensing
https://exalate.com/hack/?utm_campaign=ExalateHack&utm_medium=docs&utm_source=docs_home_page
https://exalate.com/academy
https://exalate.com/blog
https://www.youtube.com/@exalate-integration
https://exalate.com/ebooks-and-whitepapers/
https://community.exalate.com
https://exalate.atlassian.net/servicedesk/customer/portal/5
https://exalate.com/partners

