How does Exalate prevent sync loops?

Last Modified on 02/03/2026 12:06 pm EST

How does Exalate prevent sync loops?

Exalate prevents sync loops by employing built-in change detection that differentiates
between updates made by users in the local system and those originating from synchronization.
This approach ensures that changes received from synchronization don't trigger additional sync
cycles, keeping systems in sync without creating loops.

Change detection for sync loops

When an incoming script applies changes to a work item, Exalate marks those modifications as
sync-generated. This allows the outgoing script on the same side to detect the sync-generated
changes and prevent another synchronization cycle from being triggered.

This mechanism ensures that only genuine local changes (made by users) initiate an outgoing
synchronization to the connected platform. Changes that came from an incoming sync do not loop
back and cause redundant synchronization.

The role of the firstSync flag

The firstSync flag is crucial for preventing sync loops during initial synchronization. This flag
helps distinguish between a first-time sync and subsequent updates. When a work item is
synced for the first time, you can apply different logic, treating the initial setup differently from
ongoing updates.

This is particularly helpful for preventing loop-related issues that often arise during initialization
or setup behavior.
Timestamps and version tracking to avoid conflicts

Exalate uses timestamps and version tracking to detect when both sides have been updated
since the last sync. If changes happen simultaneously on both sides, Exalate processes them
sequentially, ensuring data consistency and avoiding competing update cycles.

Your scripts can include conditional logic to decide how to handle simultaneous changes, such
as:

¢ Preferring the most recent update

e Requiring manual resolution for specific fields

Sync queue mechanism for orderly processing

The sync queue mechanism is another key element of Exalate’s loop prevention. Exalate tracks
pending operations to ensure changes in flight are processed in order. This prevents
reprocessing of updates that are already queued or recently completed, ensuring orderly
synchronization even when rapid changes happen across connected systems.



Conditional logic for conflict resolution

You can configure conditional logic in your scripts to handle potential conflicts, especially when
changes occur simultaneously on both sides. This gives you fine-grained control over how
confhedduare resolved, ensuring the right data is prioritized and reducing the chance of
synchironization errors or data loss.

Release History [
This @pprnoeach to sync loop prevention ensures smooth, reliable, and efficient synchronization
withébitRe&dtmndant updates, even in complex scenarios with high-frequency changes.

Security [

Pricing and Licensing [

Resources

Subscribe for a weekly Exalate hack [

Academy [

Blog [

YouTube Channel &

Ebooks

Still need help?

Join our Community 2

Visit our Service Desk

Find a Partner


https://exalate.com/who-we-are
http://docs.exalate.com/docs/release-history
http://docs.exalate.com/docs/glossary
http://docs.exalate.com/docs/exalate-api-reference-documentation
http://docs.exalate.com/docs/security
http://docs.exalate.com/docs/pricing-licensing
https://exalate.com/hack/?utm_campaign=ExalateHack&utm_medium=docs&utm_source=docs_home_page
https://exalate.com/academy
https://exalate.com/blog
https://www.youtube.com/@exalate-integration
https://exalate.com/ebooks-and-whitepapers/
https://community.exalate.com
https://exalate.atlassian.net/servicedesk/customer/portal/5
https://exalate.com/partners

