
How Does Synchronization Work in New Exalate?
Last Modified on 02/03/2026 10:43 am EST

The replica-based architecture of Exalate

Exalate synchronization uses a replica-based architecture where each side independently controls
what data to share and how to apply incoming information. When a work item changes in one
system, the outgoing script on that side populates a replica object with the fields and values
you've configured to share. This replica travels to the receiving system where the incoming script
reads the data and applies it to the corresponding work item according to local rules.

How synchronization triggers and scripts work

The process begins when a trigger condition is met, such as a work item matching a specific
project, label, or status filter. Exalate detects the change, executes the outgoing script to create
the replica, and sends it to the connected system. The receiving side processes the incoming
replica through its incoming script, which determines how to map fields, transform values, and
update the local work item.

Independent control for outgoing and incoming scripts

Both outgoing and incoming scripts run independently on each side of the integration. This
autonomous control means your organization decides what to send without needing permission
from the receiving side, and they independently decide how to apply your data without your
involvement. Neither side sees or modifies the other's scripts, maintaining separation and security
especially important in cross-company integrations.

Real-time synchronization and conflict resolution

Synchronization happens in real time with changes propagating immediately after they occur.
When updates happen on both sides simultaneously, Exalate processes them in sequence to
maintain data consistency. The platform includes conflict resolution mechanisms you can
configure in your scripts to handle cases where both sides modify the same field.

Helper functions for common tasks

Helper functions simplify common synchronization tasks like merging comments, handling
attachments, and managing user mappings. The commentHelper.mergeComments function
combines comment threads from both sides, attachmentHelper.mergeAttachments synchronizes
files, and nodeHelper methods map entities like users, statuses, and priorities between different
systems.

Queuing mechanism for network disruptions

If one system is temporarily unavailable, Exalate queues pending synchronization operations.
When connectivity restores, queued updates process automatically to bring systems back into
alignment without data loss. This queuing mechanism ensures reliable synchronization even when
networks experience temporary disruptions or systems undergo maintenance.

Product

About Us �

Release History �

Glossary �

API Reference �

Security �

https://docs.exalate.com/docs/how-exalate-works
https://docs.exalate.com/docs/how-exalate-works
https://docs.exalate.com/docs/how-exalate-works
https://docs.exalate.com/docs/how-exalate-works
https://docs.exalate.com/docs/how-exalate-works
https://exalate.com/who-we-are
http://docs.exalate.com/docs/release-history
http://docs.exalate.com/docs/glossary
http://docs.exalate.com/docs/exalate-api-reference-documentation
http://docs.exalate.com/docs/security


Pricing and Licensing �

Resources

Subscribe for a weekly Exalate hack �

Academy �

Blog �

YouTube Channel �

Ebooks �

Still need help?

Join our Community �

Visit our Service Desk �

Find a Partner �

http://docs.exalate.com/docs/pricing-licensing
https://exalate.com/hack/?utm_campaign=ExalateHack&utm_medium=docs&utm_source=docs_home_page
https://exalate.com/academy
https://exalate.com/blog
https://www.youtube.com/@exalate-integration
https://exalate.com/ebooks-and-whitepapers/
https://community.exalate.com
https://exalate.atlassian.net/servicedesk/customer/portal/5
https://exalate.com/partners

