How to Measure Exalate Performance - the Ping
Pong Test
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Introduction

The performance of Exalate depends on many different factors as it depends on many different
components:

e the underlying trackers exalate is integrating with

e The machines hosting the Exalate instance (when deployed outside of the tracker)

e The network layout between the two different environments and the quality of the network
connection

e The type and size of information that is being exchanged

e The complexity of the mapping and transformation of the synchronization

The ping pong test has been set up to have a benchmark such that any performance regression
can be highlighted as these occur. This test also acts as a load test to check how the solution
behaves under load.

Environment Setup
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The left Jira has 2 projects

e Ping Pong Source (PPS)
e Ping Pong Target (PPT)


http://docs.exalate.com/docs/search?phrase=:Ping+Pong+Test

The right Jira has 1 project

e Ping Pong Wall (PPW)

The source has a set of 1000 issues, containing a mix of comments and attachments of various

sizes. The Jira Data Generator add-on (here) can be used to create such projects.

The Ping Pong test

The ping pong test will validate:

e The Exalate operation (which brings an issue 'under sync')

e The sync back operation (which triggers a message back)

e The trigger operation (which automatically Exalates an issue)

e The Update operation (by updating the description this change needs to be applied to the

target)

e The Unexalate operation (which severe the synchronization tie between two issues)

The Flow of a Single Issue

The issue keys and project keys are different in the actual test
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https://marketplace.atlassian.com/apps/1210725/data-generator-for-jira
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There are in total 9 exalate operations performed for one cycle.

Setting Up the Test

To configure the test, you will need to setup the following:
e JiraAand]JiraB
o Both on-premise
o Both have Exalate deployed

e The projects
o PPS (Source - Jira A - Project Management configuration)

Project type
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o PPW (Wall - Jira B - Project Management configuration)
o PPT (Target - Jira A - Project Management configuration)

o Additionally - on every project a custom field 'Remote Key' of type 'single line text'

« The Ping Connection

o JiraA

Jira A - Ping Connection - Outgoing sync

The log.info is to collect the timestamps.

import java.sgl.Timestamp

replica.key = issue.key
replica.type = issue.type
replica.assignee = issue.assignee
replica.reporter = issue.reporter
replica.summary = issue.summary
replica.description = issue.description
replica.labels = issue.labels
replica.comments = ijssue.comments
replica.resolution = issue.resolution
replica.status = issue.status
replica.parentld = issue.parentld
replica.priority = issue.priority
replica.attachments = issue.attachments
replica.project = issue.project

//Comment these lines out if you are interested in sending the full list of versions and components of the
source project.

replica.project.versions = []

replica.project.components =[]

log.info("PINGPONG - PING OUT - ${issue.key} - [${new Date().time}]")

/*
Custom Fields

replica.customFields."CF Name" = issue.customFields."CF Name"
*/

Jira A - Ping Connection - Incoming sync



if(firstSync){
/I do not create on the outgoing path
return

}

log.info("PINGPONG - PING IN - ${issue.key} - [${new Date().time}]")

issue.summary = replica.summary

issue.description = replica.description

issue.labels = replica.labels

issue.comments = commentHelper.mergeComments(issue, replica)

issue.attachments = attachmentHelper.mergeAttachments(issue, replica)
issue.customFields."Remote Key".value = replica.customKeys.pongissue

o JiraB

Jira B - Ping Connection - Outgoing Sync

replica.key = issue.key
replica.type = issue.type
replica.assignee = issue.assignee
replica.reporter = issue.reporter
replica.summary = issue.summary
replica.description = issue.description
replica.labels = issue.labels
replica.comments = ijssue.comments
replica.resolution = issue.resolution
replica.status = issue.status
replica.parentld = issue.parentld
replica.priority = issue.priority
replica.attachments = issue.attachments
replica.project = issue.project

replica.customKeys.pongissue = issue.customFields."Remote Key".value

//Comment these lines out if you are interested in sending the full list of versions and components of the
source project.

replica.project.versions = []

replica.project.components = []

Jira B - Ping Connection - Outgoing sync

if(firstSync){
issue.projectkey = "PPW"
issue.typeName = "Task"
}
issue.summary = replica.summary
issue.description = replica.description
issue.labels = replica.labels
issue.comments = commentHelper.mergeComments(issue, replica)

issue.attachments = attachmentHelper.mergeAttachments(issue, replica)

« The Pong Connection

o Jira A

Jira A - Pong Connection - Outgoing Sync



replica.key = issue.key

replica.type = issue.type
replica.assignee = issue.assignee
replica.reporter = issue.reporter
replica.summary = issue.summary
replica.description = issue.description
replica.labels = issue.labels
replica.comments = ijssue.comments
replica.resolution = issue.resolution
replica.status = issue.status
replica.parentld = issue.parentld
replica.priority = issue.priority
replica.attachments = issue.attachments
replica.project = issue.project

//Comment these lines out if you are interested in sending the full list of versions and components of the
source project.

replica.project.versions =[]

replica.project.components = []

//replica.customKeys.foo = new Date()

/*
Custom Fields

replica.customFields."CF Name" = issue.customFields."CF Name"
&/

Jira A - Pong Connection - Incoming Sync

if(firstSync){
issue.projectkey = "PPT"
/I Set type name from source issue, if not found set a default
issue.typeName = "Task"

// report back the issue key of the created issue
syncHelper.syncBackAfterProcessing()

}

issue.summary = replica.summary

issue.description = replica.description

issue.labels = replica.labels

issue.comments = commentHelper.mergeComments(issue, replica)

issue.attachments = attachmentHelper.mergeAttachments(issue, replica)

o JiraB

Jira B - Pong connection - Outgoing sync



e An ac

replica.key = issue.key

replica.type = issue.type
replica.assignee = issue.assignee
replica.reporter = issue.reporter
replica.summary = issue.summary
replica.description = issue.description
replica.labels = issue.labels
replica.comments = ijssue.comments
replica.resolution = issue.resolution
replica.status = issue.status
replica.parentld = issue.parentld
replica.priority = issue.priority
replica.attachments = issue.attachments
replica.project = issue.project

//Comment these lines out if you are interested in sending the full list of versions and components of the
source project.

replica.project.versions =[]

replica.project.components = []

Jira B - Pong Connection - Incoming sync

issue.summary = replica.summary

issue.description = replica.description

issue.labels = replica.labels

issue.comments = commentHelper.mergeComments(issue, replica)

issue.attachments = attachmentHelper.mergeAttachments(issue, replica)

// the update of the custom field will trigger an update event on the ping connection back to source
issue.customFields."Remote Key".value = replica.key

tive trigger that Exalates issues over the pong connection which are created on the PPW

project

Edit Trigger

Specify a JQL query to synchronize issues automatically. All issues that fit the query will be triggered for synchronization.
Find more details
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Running the Test

e Start an exalate on a subset of issues on project PPS by creating a trigger (with a JQL) and
choosing Bulk Exalate.

lssue Events: project=AENA and key < AENA-100 ing 10 pon ®
create/update  the poing ping_te_pong

Edit

/ Bulk Exalate

Bulk Unexalate

Documentation EULA Support Report abug Delete

¢ Inspect the logging (exalate.log in the <jira-home>/logs directory).

Grep on the string 'PINGPONG' - it will reveal the timestamps.

What can you expect?

e As stated in the introduction, there are many components at play that will influence the
outcome of the performance test.
e Our baseline, used in the regression tests, is to process on average 300 issues in an hour

(2700 synchronization transactions)
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