How to Measure Exalate Performance - the Ping
Pong Test

Last Modified on 02/04/2026 9:48 am EST

Introduction

The performance of Exalate depends on many different factors as it depends on many different
components:

e the underlying trackers exalate is integrating with

e The machines hosting the Exalate instance (when deployed outside of the tracker)

e The network layout between the two different environments and the quality of the network
connection

e The type and size of information that is being exchanged

e The complexity of the mapping and transformation of the synchronization

The ping pong test has been set up to have a benchmark such that any performance regression
can be highlighted as these occur. This test also acts as a load test to check how the solution
behaves under load.

Environment Setup

- — JIRA SERVER/CLOUD — A r— JIRA SERVER/CLOUD — 1

Al

ANY NETWORK

T Jira T Jira

o\ A\

Vi

EXALATE APP

1>

EXALATE APP

The left Jira has 2 projects

e Ping Pong Source (PPS)
e Ping Pong Target (PPT)

http://docs.exalate.com/docs/search?phrase=:Ping+Pong+Test

The right Jira has 1 project

e Ping Pong Wall (PPW)

The source has a set of 1000 issues, containing a mix of comments and attachments of various

sizes. The Jira Data Generator add-on (here) can be used to create such projects.

The Ping Pong test

The ping pong test will validate:

e The Exalate operation (which brings an issue 'under sync')

e The sync back operation (which triggers a message back)

e The trigger operation (which automatically Exalates an issue)

e The Update operation (by updating the description this change needs to be applied to the

target)

e The Unexalate operation (which severe the synchronization tie between two issues)

The Flow of a Single Issue

The issue keys and project keys are different in the actual test

Effect on PPS

D ipti
escription (left)

PPS-1 gets exalated
1 using the ping_pong -
connection

This creates an issue

PPW-2 (on right jira)

The trigger on right Jira
3 picks up the create -
event of PPW-2

PPW-2 gets exalated
using the

ping_pong_part2
connection

Effect on PPW
(right)

create PPW-2

Effect
on
PPT

(left)

Exalate
function

Exalate

Create issue

synclistener
captures
Create

event

trigger on
PPW
executes an

exalate

https://marketplace.atlassian.com/apps/1210725/data-generator-for-jira

Effect

Descrintion Effect on PPS Effect on PPW on Exalate
P (left) (right) PPT function
(left)
This creates on issue create
5 create issue
PPT-3 (on the left jira) PPT-2
Syncback is
The ping_pong_part2 has
scheduling
6 a syncback, an update - - -
) an update
syncevent is scheduled
event

Field 'Remote

The incoming sync on issue is
Key' is
7 PPW-2 updates a custom updated
. updated with
field 'Remote Key' properly
'PPT-2'

L . synclistener
The update is triggering

captures
8 a syncevent on the ping - - -
) update
pong connection
event
The ping_pong Field 'Remote
the issue is
connection updates the Key'is
9 - - updated
custom field 'Remote updated with
properly
Key' 'PPT-2'

There are in total 9 exalate operations performed for one cycle.

Setting Up the Test

To configure the test, you will need to setup the following:
e JiraAand]JiraB
o Both on-premise
o Both have Exalate deployed

e The projects
o PPS (Source - Jira A - Project Management configuration)

Project type

Crsate project e ke Wi

e

(7 e sl v kgl s Rorhn softwars devebacrent
Ledy, Aot drmicerest nBasens, wrrtand _LL Corb i e, Ba wiking boend
" s, Corrts e o e bk Cerrecn s s i s

-, Bawe sottaars devchomrent
) ek desshrent sk ere bugn. Cawmcl
=1e20ame and b tem

I p——
o B II-_'. M Survica Dusk
| Track piarion mnd mesin o wanivanty, |Lp| Werage nckiers, chwngas, prasiens and
T T Y M Bvioa g s TEM reritzss
(7 Comemarssnics
F Proias wape, ol faacbas s vas
e
@ s
T Pemmet manpement e]

= My ek o rport on allof vew verk e g |1

2| Guacy cosarnm et e s sk e v
e i e i,

e e
B e Ll]
thraah a medrvdprreen

S —— o

o PPW (Wall - Jira B - Project Management configuration)
o PPT (Target - Jira A - Project Management configuration)

o Additionally - on every project a custom field 'Remote Key' of type 'single line text'

« The Ping Connection

o JiraA

Jira A - Ping Connection - Outgoing sync

The log.info is to collect the timestamps.

import java.sgl.Timestamp

replica.key = issue.key
replica.type = issue.type
replica.assignee = issue.assignee
replica.reporter = issue.reporter
replica.summary = issue.summary
replica.description = issue.description
replica.labels = issue.labels
replica.comments = ijssue.comments
replica.resolution = issue.resolution
replica.status = issue.status
replica.parentld = issue.parentld
replica.priority = issue.priority
replica.attachments = issue.attachments
replica.project = issue.project

//Comment these lines out if you are interested in sending the full list of versions and components of the
source project.

replica.project.versions = []

replica.project.components =[]

log.info("PINGPONG - PING OUT - ${issue.key} - [${new Date().time}]")

/*
Custom Fields

replica.customFields."CF Name" = issue.customFields."CF Name"
*/

Jira A - Ping Connection - Incoming sync

if(firstSync){
/I do not create on the outgoing path
return

}

log.info("PINGPONG - PING IN - ${issue.key} - [${new Date().time}]")

issue.summary = replica.summary

issue.description = replica.description

issue.labels = replica.labels

issue.comments = commentHelper.mergeComments(issue, replica)

issue.attachments = attachmentHelper.mergeAttachments(issue, replica)
issue.customFields."Remote Key".value = replica.customKeys.pongissue

o JiraB

Jira B - Ping Connection - Outgoing Sync

replica.key = issue.key
replica.type = issue.type
replica.assignee = issue.assignee
replica.reporter = issue.reporter
replica.summary = issue.summary
replica.description = issue.description
replica.labels = issue.labels
replica.comments = ijssue.comments
replica.resolution = issue.resolution
replica.status = issue.status
replica.parentld = issue.parentld
replica.priority = issue.priority
replica.attachments = issue.attachments
replica.project = issue.project

replica.customKeys.pongissue = issue.customFields."Remote Key".value

//Comment these lines out if you are interested in sending the full list of versions and components of the
source project.

replica.project.versions = []

replica.project.components = []

Jira B - Ping Connection - Outgoing sync

if(firstSync){
issue.projectkey = "PPW"
issue.typeName = "Task"
}
issue.summary = replica.summary
issue.description = replica.description
issue.labels = replica.labels
issue.comments = commentHelper.mergeComments(issue, replica)

issue.attachments = attachmentHelper.mergeAttachments(issue, replica)

« The Pong Connection

o Jira A

Jira A - Pong Connection - Outgoing Sync

replica.key = issue.key

replica.type = issue.type
replica.assignee = issue.assignee
replica.reporter = issue.reporter
replica.summary = issue.summary
replica.description = issue.description
replica.labels = issue.labels
replica.comments = ijssue.comments
replica.resolution = issue.resolution
replica.status = issue.status
replica.parentld = issue.parentld
replica.priority = issue.priority
replica.attachments = issue.attachments
replica.project = issue.project

//Comment these lines out if you are interested in sending the full list of versions and components of the
source project.

replica.project.versions =[]

replica.project.components = []

//replica.customKeys.foo = new Date()

/*
Custom Fields

replica.customFields."CF Name" = issue.customFields."CF Name"
&/

Jira A - Pong Connection - Incoming Sync

if(firstSync){
issue.projectkey = "PPT"
/I Set type name from source issue, if not found set a default
issue.typeName = "Task"

// report back the issue key of the created issue
syncHelper.syncBackAfterProcessing()

}

issue.summary = replica.summary

issue.description = replica.description

issue.labels = replica.labels

issue.comments = commentHelper.mergeComments(issue, replica)

issue.attachments = attachmentHelper.mergeAttachments(issue, replica)

o JiraB

Jira B - Pong connection - Outgoing sync

e An ac

replica.key = issue.key

replica.type = issue.type
replica.assignee = issue.assignee
replica.reporter = issue.reporter
replica.summary = issue.summary
replica.description = issue.description
replica.labels = issue.labels
replica.comments = ijssue.comments
replica.resolution = issue.resolution
replica.status = issue.status
replica.parentld = issue.parentld
replica.priority = issue.priority
replica.attachments = issue.attachments
replica.project = issue.project

//Comment these lines out if you are interested in sending the full list of versions and components of the
source project.

replica.project.versions =[]

replica.project.components = []

Jira B - Pong Connection - Incoming sync

issue.summary = replica.summary

issue.description = replica.description

issue.labels = replica.labels

issue.comments = commentHelper.mergeComments(issue, replica)

issue.attachments = attachmentHelper.mergeAttachments(issue, replica)

// the update of the custom field will trigger an update event on the ping connection back to source
issue.customFields."Remote Key".value = replica.key

tive trigger that Exalates issues over the pong connection which are created on the PPW

project

Edit Trigger

Specify a JQL query to synchronize issues automatically. All issues that fit the query will be triggered for synchronization.
Find more details

Trigge!

Issue

I

r will apply to selected entity type * @

v

project=ppw

Then sync with connection * @

pingpong_part2 v

Notes

Send

back the ping

Active?

v @)

Running the Test

e Start an exalate on a subset of issues on project PPS by creating a trigger (with a JQL) and
choosing Bulk Exalate.

lssue Events: project=AENA and key < AENA-100 ing 10 pon ®
create/update the poing ping_te_pong

Edit

/ Bulk Exalate

Bulk Unexalate

Documentation EULA Support Report abug Delete

¢ Inspect the logging (exalate.log in the <jira-home>/logs directory).

Grep on the string 'PINGPONG' - it will reveal the timestamps.

What can you expect?

e As stated in the introduction, there are many components at play that will influence the
outcome of the performance test.
e Our baseline, used in the regression tests, is to process on average 300 issues in an hour

(2700 synchronization transactions)

ON THIS PAGE

Introduction

Environment Setup

'T'F\%dll)‘icgg Pong test

About Us

Rbreideowisfarpingle Issue
Lor? rsﬁr% Lt?Jhe Test

API Reference 2

Whatgan you expect?

Pricing and Licensing

Resources

Subscribe for a weekly Exalate hack [

Academy [

Blog [@

YouTube Channel @

Ebooks

Still need help?

Join our Community

Visit our Service Desk [

Find a Partner 2

http://docs.exalate.com/#Introduction0
http://docs.exalate.com/#EnvironmentSetup1
http://docs.exalate.com/#2
http://docs.exalate.com/#ThePingPongtest3
http://docs.exalate.com/#TheFlowofaSingleIssue4
http://docs.exalate.com/#RunningtheTest5
http://docs.exalate.com/#Whatcanyouexpect6
https://exalate.com/who-we-are
http://docs.exalate.com/docs/release-history
http://docs.exalate.com/docs/glossary
http://docs.exalate.com/docs/exalate-api-reference-documentation
http://docs.exalate.com/docs/security
http://docs.exalate.com/docs/pricing-licensing
https://exalate.com/hack/?utm_campaign=ExalateHack&utm_medium=docs&utm_source=docs_home_page
https://exalate.com/academy
https://exalate.com/blog
https://www.youtube.com/@exalate-integration
https://exalate.com/ebooks-and-whitepapers/
https://community.exalate.com
https://exalate.atlassian.net/servicedesk/customer/portal/5
https://exalate.com/partners

