
syncBackAfterProcessing
Last Modified on 01/30/2026 11:18 am EST

JIRA CLOUD AZURE DEVOPS JIRA ON-PREMISE ZENDESK GITHUB SERVICENOW HP ALM/QC

SALESFORCE

Signature
Helper syncHelper

Signature syncBackAfterProcessing()

Description Use this helper method in the Incoming sync to update the source issue once the
synchronization to the destination side is finished.

Introduced
in

4.6.5

Using the Feature

Assume

you have 2 instances 'Internal' and 'External'.
You raise an issue on 'Internal', and exalate it to 'External'
You need to have a custom field on Internal containing the remote key of the issue created
on External

What needs to happen is

Once that the issue is created on External, a message is sent back to Internal containing the
key of the created issue
The syncHelper.syncBackAfterProcessing() triggers this message as it queues a sync event
which is handled as if the issue on external has been changed
The processing of this sync event is identical to any other sync event

What you need to configure:

On the destination side (external) in the incoming sync processor

// trigger a sync back to the internal instance
if(firstSync){
 syncHelper.syncBackAfterProcessing()
}

On the source side (internal) in the incoming sync processor

http://sandbox-exalate-documentation.knowledgeowl.com/docs/search?phrase=:Jira+Cloud
http://sandbox-exalate-documentation.knowledgeowl.com/docs/search?phrase=:Azure+DevOps
http://sandbox-exalate-documentation.knowledgeowl.com/docs/search?phrase=:Jira+on-premise
http://sandbox-exalate-documentation.knowledgeowl.com/docs/search?phrase=:Zendesk
http://sandbox-exalate-documentation.knowledgeowl.com/docs/search?phrase=:GitHub
http://sandbox-exalate-documentation.knowledgeowl.com/docs/search?phrase=:ServiceNow
http://sandbox-exalate-documentation.knowledgeowl.com/docs/search?phrase=:HP+ALM%252FQC
http://sandbox-exalate-documentation.knowledgeowl.com/docs/search?phrase=:Salesforce

// update the custom field 'remote issue key' with the key of the newly created issue
issue.customFields."remote issue key".value = replica.key

Warning: Method syncHelper.syncBackAfterProcessing() only works for the bidirectional
synchronization. Using it for the unidirectional sync might lead to unexpected sync errors.

Warning: Using syncHelper.syncBackAfterProcessing() outside the firstSync if block might
cause infinite loops.

Avoiding conflicts
A sync conflict is possible whenever changing information on the source issue immediately after
an exalate.

Source Jira Target Jira

Exalate issue
Status is 'open'

Create issue
Status is 'Open'

Change status to 'In Progress

Syncback issue
Status is open

Syncback is processed
Status is changed back to
'Open'

Status is updated to 'In Progress' because of message sent in
step 3

Status = Open Status = 'In Progress'

To avoid this conflict, one can add this code

 if (!firstSync && previous?.status.name == replica?.status.name) {
 // do not update the status as it might conflict
 }

Example usages:
syncBackAfterProcessing function can be used to ensure that changes are propagated back to the

source instance after the synchronization process. The placement of syncBackAfterProcessing
depends on the flow of your synchronization and how you want to handle updates.
Here's a general guideline on where to place the syncBackAfterProcessing function:

In the FirstSync Script:

At the Beginning: If placed at the beginning of the firstSync, it ensures that changes are
sent back to the source immediately when the first sync occurs. This can be useful if you
want to immediately reflect any initial changes made during the creation or initial
synchronization of the issue.

At the End: If placed at the end of the firstSync, it ensures that any changes made during
the synchronization process are reflected back to the source. This is typically more common
and useful as it allows the synchronization process to complete all necessary updates before
sending back any changes.

General Recommendation:

It is generally recommended to place syncBackAfterProcessing at the end of the firstSync script.
This way, you ensure that all the necessary synchronization and processing steps have been
completed before changes are propagated back to the source instance.

Example of Placement at the End of firstSync:

if(firstSync){
 issue.projectKey = "CLOUD"
 issue.typeName = nodeHelper.getIssueType(replica.type?.name, issue.projectKey)?.name ?: "Task"

 //Rest of required fields for issue creation

 syncHelper.syncBackAfterProcessing()
}

Product

About Us �

Release History �

Glossary �

API Reference �

Security �

Pricing and Licensing �

Resources

Subscribe for a weekly Exalate hack �

Academy �

Blog �

YouTube Channel �

Ebooks �

Still need help?

Join our Community �

Visit our Service Desk �

Find a Partner �

https://exalate.com/who-we-are
http://sandbox-exalate-documentation.knowledgeowl.com/docs/release-history
http://sandbox-exalate-documentation.knowledgeowl.com/docs/glossary
http://sandbox-exalate-documentation.knowledgeowl.com/docs/exalate-api-reference-documentation
http://sandbox-exalate-documentation.knowledgeowl.com/docs/security
http://sandbox-exalate-documentation.knowledgeowl.com/docs/pricing-licensing
https://exalate.com/hack/?utm_campaign=ExalateHack&utm_medium=docs&utm_source=docs_home_page
https://exalate.com/academy
https://exalate.com/blog
https://www.youtube.com/@exalate-integration
https://exalate.com/ebooks-and-whitepapers/
https://community.exalate.com
https://exalate.atlassian.net/servicedesk/customer/portal/5
https://exalate.com/partners

