How to Sync Elements Connect Fields with
Different Key Values in Azure DevOps

Last Modified on 01/28/2026 7:28 am EST

Note: You can sync Elements Connect fields on versions 5.12 and older.

Elements Connect (previously known as nFeed) is a Jira add-on allowing the integration of external
information into the context of an issue. This information can come from databases, web services,
or other sources.

For instance, it can be used to show customer information such as a telephone number, address,
and so on, which has been looked up from a CRM database.

This add-on is particular in the way that the information is stored. Instead of storing the
information which is shown in the issue, it only stores an identifier of that information allowing us
to look up the actual values.

There are 2 challenges in manipulating this data especially when each side of a synchronization
relation is using a different data store.

Looking up Elements Connect Values

The challenge when synchronizing these custom fields between two instances is that the values
need to be looked up in the same way as Elements Connect does. As the add-on doesn't provide a
JIRA-level API to actually do this lookup, a workaround needs to be used.

Elements Connect provides a REST API allowing to extract the values as shown in the issue. Below
is a snippet allowing to use of this REST API to extract the required information

http://sandbox-exalate-documentation.knowledgeowl.com/docs/search?phrase=:Azure+DevOps
https://marketplace.atlassian.com/plugins/com.valiantys.jira.plugins.SQLFeed/server/overview
https://valiantys.atlassian.net/wiki/display/NFEED59X/REST+API

// NFeed REST Api returns a json which needs to be parsed. Using the JsonSlurper
import groovy.json.JsonSlurper

/! A generic function which can be reused for accessing rest resourses
def getNfeedValue = {
String issueKey, customFieldld ->

URL url;
def baseURL = "http://foo.exalate.net/rest/nfeed/1.0/customfield";

String userpass = "user:password";
String basicAuth = "Basic " + new String(new Base64().encoder.encode(userpass.getBytes()));

/! GET the value using the 'Export' method

url = new URL(baseURL + "/${issueKey}/${customFieldld}/EXPORT");
URLConnection connection = url.openConnection();

connection.requestMethod = "GET"

connection.setRequestProperty ("Content-Type", "application/json;charset=UTF-8")
connection.setRequestProperty ("Authorization", basicAuth);

connection.connect();

// Parse the]SON

String jsonString = new Scanner(connection.getContent(),"UTF-8").useDelimiter("\A").next();
def jsonSlurper = new JsonSlurper()

def jsonObject = jsonSlurper.parseText(jsonString)

// the display contains the value displayed in an issue
return jsonObject.displays

replica.customKeys.Products = getNfeedValue(issue.key, "customfield_10302")

Storing Elements Connect Values

To be able to store Elements Connect values, one needs to understand how the custom field is
configured.

In the example below, Elements Connect depends on a table audience d2 that is stored in the JIRA
database.

The code:

e Opens a connection to the database.
e Retrieves the right id from the table based on values provided by the remote instance.

e Sets the local custom fields to the found id.

/*
** Import the necessary packages allowing to look up data in a table
*/

import groovy.sql.Sql

import groovy.sql.GroovyRowResult

import java.sqgl.Connection

import org.ofbiz.core.entity.Delegatorinterface

import com.atlassian.jira.ofbiz.OfBizDelegator

import com.atlassian.jira.component.ComponentAccessor
import org.ofbiz.core.entity.ConnectionFactory

// build connection to the local JIRA database

OfBizDelegator delegator = ComponentAccessor.getOfBizDelegator();
Delegatorinterface delegatorinterface = delegator.getDelegatorinterface();
String helperName = delegatorinterface.getGroupHelperName("default");
Connection connection = ConnectionFactory.getConnection(helperName);

// Retrieve information from replica allowing to look up the right value

def targetProject = replica.customFields."Target Project".value.value
def targetProgram = replica.customFields."Target Program".value.value

def query = "selectid " +
"from audience_d2 " +
"where upper(iproject) = " + targetProject.toUpperCase() + "' " +
"and upper(itype) ="'"+ replica.issueType.name.toUpperCase() + """ +
"and upper(iprogram) = " + targetProgram.toUpperCase() + """

// query for the right data

Sql sql = new Sqgl(connection);
List<GroovyRowResult> resultRows = sql.rows(query);
sql.close();

if (resultRows.size() '= 0) {
def idRecord = resultRows.get(0).get("id")
issue.customFields."Target Category".value = idRecord
issue.customFields."Target Assignment".value = idRecord

}

How to connect to a MYSQL Database?

Here is an example to connect to a MySQL database

import groovy.sql.Sql

// connect to db
def sql = Sql.newlInstance("jdbc:mysql://localhost:3306/test",
"user", "password", "com.mysql.jdbc.Driver")

// execute a simple query

sql.eachRow("SELECT city, zipcode from cities"){ row ->
// print data returned by the query
printin "City = $row.city - Zipcode = $row.zipcode"

}

// close the connection - don't forget !!!
sql.close()

Have more questions? Ask the community

oN"HTs paGE

About Us [l
RetddisegHiiptblgrients Connect Values

gtlgﬁlsﬁéyl:*ements Connect Values
API Reference 2

btewtg epnnect to a MYSQL Database?
Pricing and Licensing

Resources

Subscribe for a weekly Exalate hack
Academy [

Blog

YouTube Channel [

Ebooks

Still need help?

Join our Community

Visit our Service Desk

Find a Partner

https://community.exalate.com/
http://sandbox-exalate-documentation.knowledgeowl.com/#LookingupElementsConnectValues0
http://sandbox-exalate-documentation.knowledgeowl.com/#StoringElementsConnectValues1
http://sandbox-exalate-documentation.knowledgeowl.com/#HowtoconnecttoaMYSQLDatabase2
https://exalate.com/who-we-are
http://sandbox-exalate-documentation.knowledgeowl.com/docs/release-history
http://sandbox-exalate-documentation.knowledgeowl.com/docs/glossary
http://sandbox-exalate-documentation.knowledgeowl.com/docs/exalate-api-reference-documentation
http://sandbox-exalate-documentation.knowledgeowl.com/docs/security
http://sandbox-exalate-documentation.knowledgeowl.com/docs/pricing-licensing
https://exalate.com/hack/?utm_campaign=ExalateHack&utm_medium=docs&utm_source=docs_home_page
https://exalate.com/academy
https://exalate.com/blog
https://www.youtube.com/@exalate-integration
https://exalate.com/ebooks-and-whitepapers/
https://community.exalate.com
https://exalate.atlassian.net/servicedesk/customer/portal/5
https://exalate.com/partners

