How to Sync Components in Jira Cloud

Last Modified on 01/28/2026 6:44 am EST

The components field is one of the standard fields of an issue. You can synchronize them as any
other issue field.

This article shows you how to synchronize issue components and create a new component if it
does not exist on the destination side.

Component issue field reference.

Source Instance
Outgoing sync
Send issue components to the destination side:

replica.components = issue.components

Destination Instance

Exalate uses CreateComponent nodeHelper to create a new component and add it to the
Components field. Add the code below into the Incoming sync to create components on your
side. To update components use the same code in the Incoming sync(change processor).

e Jira on-premise
¢ Jira Cloud

e How to assign a synced issue to an existing component?

Jiraon-premise

If you sync components with Jira Cloud there're several ways to create components, depending on
the information you know about the remote side.

= map the remote component lead email to the local component lead email

Incoming sync


http://sandbox-exalate-documentation.knowledgeowl.com/docs/search?phrase=:Jira+Cloud
http://sandbox-exalate-documentation.knowledgeowl.com/docs/search?phrase=:Jira+on-premise
http://sandbox-exalate-documentation.knowledgeowl.com/docs/search?phrase=:Component
https://exalatedocs.knowledgeowl.com/docs/component-structure
https://exalatedocs.knowledgeowl.com/docs/createcomponent-7733390
http://sandbox-exalate-documentation.knowledgeowl.com/#comp-jiraon-premise
http://sandbox-exalate-documentation.knowledgeowl.com/#comp-jiracloud
http://sandbox-exalate-documentation.knowledgeowl.com/#howtoassignasyncedissuetoanexistingcomponent

issue.components = replica.components.collect { component ->

def remoteComponentLeadEmail = component.lead?.email

def localComponentLeadName = nodeHelper.getUserByEmail(remoteComponentLeadEmail)
nodeHelper.createComponent(

issue,

component.name,

component.description, // can also be null

localComponentLeadName?.key, // can also be null

component.assigneeType?.name() ?: "UNASSIGNED" // set a default as unassigned if there's no assignee type f
or the component

)

}

s set default component lead if the remote component lead email is not found

Incoming sync

def defaultUser = nodeHelper.getUserByEmail("default@email.com")

issue.components = replica.components.collect { component ->

def remoteComponentLeadEmail = component.lead?.email

def localComponentLeadName = nodeHelper.getUserByEmail(remoteComponentLeadEmail)?.key
nodeHelper.createComponent(

issue,

component.name,

component.description, // can also be null

localComponentLeadName ?: defaultUser.key, // can also be null
component.assigneeType?.name() ?: "UNASSIGNED" // set a default as unassigned if there's no assignee type f
or the component

)

}

s Do not create a new component but try to look for the same one by name

Incoming sync

issue.components = replica.components
.collect { remoteComponent ->
nodeHelper.getComponent(
remoteComponent.name,
nodeHelper.getProject(issue.projectKey)
)
}.findAll()

If you sync components between Jira Server instances and the usernames match, add the code
below into the Incoming sync

issue.components = replica.components.collect{
nodeHelper.createComponent(

issue,

it.name,

it.description,

it.leadKey,

it.assigneeType.name()

)
}



Jira Cloud

e If you want to sync the components with Jira Server, you need to map the remote
component lead email to the local component lead email.

Incoming sync

final def userMapping = [
"remoteadmin@admin.com" : "localadmin@admin.com",
|
issue.components = replica.components.collect { component ->
def remoteComponentLeadEmail = component.lead?.email

def localComponentLeadKey = nodeHelper.getUserByEmail(userMapping[remoteComponentLeadEmaill)?.key
nodeHelper.createComponent(

issue,

component.name,

component.description, // can also be null
localComponentLeadKey, // can also be null

component.assigneeType?.name() // can also be null
)

}

¢ If you sync between Jira Cloud instances use the code below
Note: The user with the specified account must be a user in your instance.

issue.components = replica.components.collect {
component ->

nodeHelper.createComponent(
issue,

component.name,
component.description,
component.leadKey,
component.assigneeType?.name()

)
}

How to assign a synced issue to an existing component?

The receiving side is looking for an existing component and assigns the issue to the lead of this
component.

Incoming sync

def component = nodeHelper.getProject(issue.project?.key ?: issue.projectkKey).components.find {c-> c.name == "elT
sll}

issue.assignee = component.lead

issue.components += component

Another possible way is using getComponent nodeHelper.

Product


https://exalatedocs.knowledgeowl.com/docs/getcomponent-6226119

def ’%P&létclgs issue.project ?: nodeHelper.getProject(issue.projectKey)
def @856 MEHPY RodeHelper.getComponent("elTs", project)
issuelassigneze = component.lead
issuggonpeNeRts += component

Security

Pricing and Licensing

Resources

Subscribe for a weekly Exalate hack [

Academy [

Blog [

YouTube Channel &

Ebooks

Still need help?

Join our Community

Visit our Service Desk [

Find a Partner


https://exalate.com/who-we-are
http://sandbox-exalate-documentation.knowledgeowl.com/docs/release-history
http://sandbox-exalate-documentation.knowledgeowl.com/docs/glossary
http://sandbox-exalate-documentation.knowledgeowl.com/docs/exalate-api-reference-documentation
http://sandbox-exalate-documentation.knowledgeowl.com/docs/security
http://sandbox-exalate-documentation.knowledgeowl.com/docs/pricing-licensing
https://exalate.com/hack/?utm_campaign=ExalateHack&utm_medium=docs&utm_source=docs_home_page
https://exalate.com/academy
https://exalate.com/blog
https://www.youtube.com/@exalate-integration
https://exalate.com/ebooks-and-whitepapers/
https://community.exalate.com
https://exalate.atlassian.net/servicedesk/customer/portal/5
https://exalate.com/partners

