
How to Sync Rich Text and HTML Between
Freshservice and Other Systems
Last Modified on 06/18/2025 11:54 am EDT

FRESHSERVICE

When syncing data between Freshservice and other systems like Jira, GitHub, Azure DevOps,
or Jira Cloud, it's important to manage the rich text formatting to ensure that the content
maintains its appearance and structure across different platforms. Freshservice, by default,
supports HTML formatting, which offers flexibility in how information is presented. However, there
are specific considerations when syncing rich text content, especially when dealing with systems
that support Markdown vs. HTML formatting.

Freshservice Formatting Capabilities

Freshservice supports HTML formatting for its descriptions and comments, which allows for
various rich text elements such as:

Bold

Italic

Underlined

Horizontal rule

Ordered lists

Unordered lists

External links

Internal links

Known Limitation

Rich text can only be used in descriptions and comments. Multi-line custom fields do
not support rich text.

In Exalate, the handling of rich text formatting depends on whether you want to preserve the
formatting across systems or whether a plain text version is acceptable. Here's a breakdown of
when to use different configurations:

http://docs.exalate.com/docs/search?phrase=:Freshservice

1. Default Configuration (Plain Text)

If you do not need to preserve any rich text formatting and prefer to sync the data as plain text
across systems, it’s safest to keep the stripHtml nodeHelpers for description and comments as
they are provided in the default Freshservice script rules. This will ensure that the rich text
formatting (HTML) is stripped out before the data is sent to the destination system, keeping the
synchronization simple and compatible across all systems.

Freshservice outgoing

replica.key = entity.key
replica.summary = entity.summary
replica.description = nodeHelper.stripHtml(entity.description)
replica.status = entity.status
replica.priority = entity.priority
replica.reporter = entity.reporter
replica.comments = nodeHelper.stripHtmlFromComments(entity.comments)
replica.attachments = entity.attachments

// Exalate API Reference Documentation: https://docs.exalate.com/docs/exalate-api-reference-documentation

2. Syncing HTML Formatting Between Systems That Support HTML

If both systems you are syncing between support HTML formatting, such as Freshservice,
Azure DevOps (ADO), and GitHub, you can preserve the rich text formatting during
synchronization. To achieve this remove the stripHtml nodeHelpers from the outgoing sync
scripts in Freshservice.

replica.key = entity.key
replica.summary = entity.summary
replica.description = entity.description
replica.status = entity.status
replica.priority = entity.priority
replica.reporter = entity.reporter
replica.comments = entity.comments
replica.attachments = entity.attachments

// Exalate API Reference Documentation: https://docs.exalate.com/docs/exalate-api-reference-documentation

3. Syncing Between Freshservice and Markdown-Supporting Systems (like Jira)

When syncing between Freshservice and systems like Jira that support Markdown but not
HTML:

Remove the stripHtml node helper from the outgoing sync scripts in Freshservice:

https://docs.exalate.com/docs/exalate-api-reference-documentation
https://docs.exalate.com/docs/exalate-api-reference-documentation

replica.key = entity.key
replica.summary = entity.summary
replica.description = entity.description
replica.status = entity.status
replica.priority = entity.priority
replica.reporter = entity.reporter
replica.comments = entity.comments
replica.attachments = entity.attachments

// Exalate API Reference Documentation: https://docs.exalate.com/docs/exalate-api-reference-documentation

On the destination side (e.g. Jira), add the node helper toMarkDownFromHtml as explained in
the Exalate documentation. This will convert the HTML formatting from Freshservice into
the appropriate Markdown syntax on Jira:

issue.description = nodeHelper.toMarkDownFromHtml(replica.description)
issue.comments = nodeHelper.toMarkDownComments(commentHelper.mergeComments(issue, replica))

Product

About Us �

Release History �

Glossary �

API Reference �

Security �

Pricing and Licensing �

Resources

Subscribe for a weekly Exalate hack �

Academy �

Blog �

YouTube Channel �

Ebooks �

Still need help?

Join our Community �

Visit our Service Desk �

Find a Partner �

https://docs.exalate.com/docs/exalate-api-reference-documentation
https://docs.exalate.com/docs/how-to-convert-data-between-html-and-markdown-in-jira-cloud
https://exalate.com/who-we-are
http://docs.exalate.com/docs/release-history
http://docs.exalate.com/docs/glossary
http://docs.exalate.com/docs/exalate-api-reference-documentation
http://docs.exalate.com/docs/security
http://docs.exalate.com/docs/pricing-licensing
https://exalate.com/hack/?utm_campaign=ExalateHack&utm_medium=docs&utm_source=docs_home_page
https://exalate.com/academy
https://exalate.com/blog
https://www.youtube.com/@exalate-integration
https://exalate.com/ebooks-and-whitepapers/
https://community.exalate.com
https://exalate.atlassian.net/servicedesk/customer/portal/5
https://exalate.com/partners

