
Adding basic external script
Last Modified on 08/02/2024 5:49 am EDT

This article shows an example of how you can create an example groovy file, add a script, and call
it in the Sync Rules.

1.

Make sure you have the scripts directory.

The directory location depends on the issue tracking platform.

Custom scripts can only be deployed on Jira Server/Datacenter and nodes which are deployed
through the docker deployment approach.

Platform location

Jira Server <jira-home>/scripts

Jira
Datacenter

<jira-shared-home>/scripts

Docker
based

/opt/<nodename>/data/scripts

There could be one of the following values instead of <nodename> :

snownode for Exalate for ServiceNow.

adnode for Exalate for Azure DevOps.

hpqcnode for Exalate for HP ALM/QC.

Jira Cloud

Jira Cloud, just as any other cloud node, supports a set of specific scripts.
Custom scripts cannot be deployed in this environment.

Check out List of external scripts for Jira Cloud for more information.

2.

Create BasicFieldSync.groovy file with the following code, and store it in the right location
on your server. There is no need to restart instance/add-on to enable the external script.

https://docs.idalko.com/exalate/display/ED/List+of+external+scripts+for+Jira+Cloud

class BasicFieldSync
{
 static receive(issue,
 replica,
 nodeHelper,
 commentHelper,
 attachmentHelper) {

 issue.summary = replica.summary
 issue.description = replica.description
 issue.assignee = nodeHelper.getUserByUsername(replica.assignee?.username)
 issue.reporter = nodeHelper.getUserByUsername(replica.reporter?.username)
 issue.labels = replica.labels
 issue.comments = commentHelper.mergeComments(issue, replica)
 issue.attachments = attachmentHelper.mergeAttachments(issue, replica)
 }
}

3.

Call the BasicFieldSync.groovy script from the Sync Rules

Replace the script in the outgoing sync rules (create and change processors) as below:

Existing script

issue.summary = replica.summary
issue.description = replica.description
issue.assignee = nodeHelper.getUserByUsername(replica.assignee?.username)
issue.reporter = nodeHelper.getUserByUsername(replica.reporter?.username)
issue.labels = replica.labels
issue.comments = commentHelper.mergeComments(issue, replica)
issue.attachments = attachmentHelper.mergeAttachments(issue, replica)

New script
BasicFieldSync.receive(
 issue,
 replica,
 nodeHelper,
 commentHelper,
 attachmentHelper
)

Now you have one file with basic synchronization rules. You can reuse it in outgoing sync
processors: new issues(create processor) and for existing issues(change processor)

If you add new code into the BasicFieldSync.groovy, it will be automatically executed in your
incoming sync rules (create and change processors).

Product

About Us

Release History

Glossary

API Reference

Security

Pricing and Licensing

Resources

Subscribe for a weekly Exalate hack

Academy

Blog

YouTube Channel

Ebooks

https://exalate.com/who-we-are
http://docs.exalate.com/docs/release-history
http://docs.exalate.com/docs/glossary
http://docs.exalate.com/docs/exalate-api-reference-documentation
http://docs.exalate.com/docs/security
http://docs.exalate.com/docs/pricing-licensing
https://exalate.com/hack/?utm_campaign=ExalateHack&utm_medium=docs&utm_source=docs_home_page
https://exalate.com/academy
https://exalate.com/blog
https://www.youtube.com/@exalate-integration
https://exalate.com/ebooks-and-whitepapers/

Ebooks

Still need help?

Join our Community

Visit our Service Desk

Find a Partner

https://community.exalate.com
https://exalate.atlassian.net/servicedesk/customer/portal/5
https://exalate.com/partners

