
Sync Rules
Last Modified on 03/11/2024 7:33 am EDT

SYNCHRONIZATION SYNC RULES SYNC INCOMING SYNC OUTGOING SYNC

Exalate uses synchronization rules (Sync Rules) to handle outgoing and incoming messages. You
can find Sync Rules as a separate tab when you select the connection to edit.

Note: For script connections, Exalate is using the Monaco editor with Groovy support.

Note: Starting with Exalate v. 8.5.1 we are running Groovy v. 4.

http://docs.exalate.com/docs/search?phrase=:synchronization
http://docs.exalate.com/docs/search?phrase=:sync+rules
http://docs.exalate.com/docs/search?phrase=:sync
http://docs.exalate.com/docs/search?phrase=:incoming+sync
http://docs.exalate.com/docs/search?phrase=:outgoing+sync

Editor Features

Light Mode: Use to toggle to switch between Dark and Light mode
Copy: Copy Incoming/Outgoing code blocks to the clipboard.
Expand: Expands the code editor window for a better view if needed.
Mini Code Map: Allows you to quickly navigate through the code, useful when dealing with
longer code blocks.

Dark Mode on:

Expanded mode on (Dark mode):

In the Sync processors, the Monaco editor library allows for auto-complete, syntax highlight and
syntax errors highlight when writing sync rules.

How to create a Sync Rule

Sync rules are groovy-based scripts that can be used to implement filtering, mapping, and
transformation. These are essential operations in any synchronization.

Groovy is a dynamic language for the Java platform. Check out the following links to get more
details about Groovy and how to develop in this language:

https://olddocs.exalate.com/exalate/display/ED/Glossary#Glossary-filtering
https://olddocs.exalate.com/exalate/display/ED/Glossary#Glossary-Transformation

http://www.groovy-lang.org/
http://www.groovy-lang.org/learn.html
http://www.groovy-lang.org/documentation.html

Groovy learning courses that we can recommend:

https://www.pluralsight.com/courses/groovy-getting-started
https://www.pluralsight.com/courses/groovy-fundamentals

Sync rule types

There are 2 different types of Sync Rules, each with its own purpose.

Outgoing sync
Incoming sync

Note: For more information please see the synchronization process explanation.

Outgoing sync

This rule defines what information is sent to the destination side.

Exalate runs the outgoing sync processor when you start the synchronization or update the local
issue which is under sync.

You can assign issue fields to a replica on the outgoing sync. For more information on this, see
issue fields available for synchronization.

Variable Explanation

Input issue local issue data you need to synchronize

Output replica copy of the issue data which is sent to the destination instance

Simple examples of Outgoing sync rules

1 replica.summary = issue.summary // send summary
2 replica.description = issue.description // send description
3 replica.comments = issue.comments // send comments
4 replica.attachments = issue.attachments // send attachments

Condition example in the Outgoing Sync rules

Don't send anything when priority is trivial

http://www.groovy-lang.org/
http://www.groovy-lang.org/learn.html
http://www.groovy-lang.org/documentation.html
https://www.pluralsight.com/courses/groovy-getting-started
https://www.pluralsight.com/courses/groovy-fundamentals
https://docs.exalate.com/docs/behind-the-scenes-of-a-sychronization
https://docs.exalate.com/docs/jira-fields-and-entities-available-for-synchronization

1 // If the issue priority is "Trivial" don't send any data. In other cases send the summary, description, comments and
attachments
2
3 if (issue.priority.name == "Trivial") {
4 return
5 }
6 replica.summary = issue.summary
7 replica.description = issue.description
8 replica.comments = issue.comments
9 replica.attachments = issue.attachments

Incoming sync

When you receive data from the other side you need to apply this data on your instance. You can
define how to handle the received information on your instance with the help of the incoming sync
rules.

Exalate runs the incoming sync every time there's new data received from the remote side.

When you receive the synchronization data from the remote side for the first time, Exalate creates
the issue locally in your instance.

Starting from this moment the issue is considered under synchronization(under sync). From
that moment every issue update triggers the update of the synced issue on the other side.

Variable Explanation

Input replica Information received from the source instance

Output issue Issue object which is used to create/update the local issue

previous Previous information received from the source instance

Important: When you leave the incoming sync empty, nothing is synchronized. Please see
 the Unidirectional synchronization for more details.

Simple Incoming sync example

1 if(firstSync){
2 // If it's the first sync for an issue and local copy of the issue does not exist yet
3 // Set project key from source issue, if not found set a default
4 issue.projectKey = nodeHelper.getProject(replica.project?.key)?.key ?: "TEST"
5 // Set type name from source issue, if not found set a default
6 issue.typeName = nodeHelper.getIssueType(replica.type?.name, issue.projectKey)?.name 7. 7 ?: "Task"}
8 issue.summary = replica.summary
9 issue.description = replica.description
10 issue.comments = commentHelper.mergeComments(issue, replica)
11 issue.attachments = attachmentHelper.mergeAttachments(issue, replica)

Note: Incoming requests are distinguished based on the information stored in a replica. So if

https://docs.exalate.com/docs/unidirectional-sync-for-jira-cloud

you want to have different sync rules for the first synchronization and then others for synced
issue updates, you should use conditional statements.

1 if (firstSync) {
2 return // don't create any issues, only sync changes to the issue which are already under sy3 nc}
4 issue.summary = replica.summary
5 issue.description = replica.description
6 issue.labels = replica.labels
7 issue.comments = commentHelper.mergeComments(issue, replica)
8 issue.comments = attachmentHelper.mergeAttachments(issue, replica)

More advanced configuration

You can set your own values for the local issue based on the received data from the other side.
 For example, if the synced issue status changes to Done on the remote side → set the local issue
status to Resolved.

To configure advanced conditions for your synchronization use script helper methods.

Check the example below:

1 // Create a request in the support project "SD", but if it's a critical issue in the customer's WEB project, assign it to B
ob Price
2
3 issue.project = nodeHelper.getProject("SD")
4
5 if (replica.priority.name = "Critical" && replica.project.key = "WEB") {
6 issue.assignee = nodeHelper.getUser("bprice") // assign to Bob
7 issue.priority = nodeHelper.getPriority("Blocker")
8 } else {
9 issue.priority = nodeHelper.getPriority("Major")
10 }
11
12 issue.summary = replica.summary
13issue.projectKey = "SD"issue.typeName = "Request"

Default configuration

By default, Exalate configures some basic scripts in the Sync Rules for your convenience. Below is
the default configuration of the Outgoing and Incoming sync.

It helps to synchronize basic issue data: summary, description, comments, resolution, status,
attachments and project.

Default Outgoing sync

https://www.tutorialspoint.com/groovy/groovy_if_else_statement
https://docs.exalate.com/docs/script-helpers
https://docs.exalate.com/docs/sync-rules

1 replica.key = issue.key
2 replica.type = issue.type
3 replica.assignee = issue.assignee
4 replica.reporter = issue.reporter
5 replica.summary = issue.summary
6 replica.description = issue.description
7 replica.labels = issue.labels
8 replica.comments = issue.comments
9 replica.resolution = issue.resolution
10 replica.status = issue.status
11 replica.parentId = issue.parentId
12 replica.priority = issue.priority
13 replica.attachments = issue.attachments
14 replica.project = issue.project

Default Incoming sync

1 if(firstSync){
2 // If it's the first sync for an issue (local issue does not exist yet)
3 // Set project key from source issue, if not found set a default
4 issue.projectKey = nodeHelper.getProject(replica.project?.key)?.key ?: "TEST"
5 // Set type name from source issue, if not found set a default
6 issue.typeName = nodeHelper.getIssueType(replica.type?.name, issue.projectKey)?.name ?: "T ask"}
7 issue.summary = replica.summary
8 issue.description = replica.description
9 issue.comments = commentHelper.mergeComments(issue, replica)
10 issue.attachments = attachmentHelper.mergeAttachments(issue, replica)

ON THIS PAGE

Outgoing sync

Incoming sync

Product

About Us 

Release History 

Glossary 

API Reference 

Security 

Pricing and Licensing 

Resources

Academy 

Blog 

YouTube Channel 

Ebooks 

Still need help?

Join our Community 

Visit our Service Desk 

Find a Partner 

http://docs.exalate.com/#Outgoingsync0
http://docs.exalate.com/#Incomingsync1
https://exalate.com/who-we-are
http://docs.exalate.com/docs/release-history
http://docs.exalate.com/docs/glossary
http://docs.exalate.com/docs/exalate-api-reference-documentation
http://docs.exalate.com/docs/security
http://docs.exalate.com/docs/pricing-licensing
https://exalate.com/academy
https://exalate.com/blog
https://www.youtube.com/@exalate-integration
https://exalate.com/ebooks-and-whitepapers/
https://community.exalate.com
https://exalate.atlassian.net/servicedesk/customer/portal/5
https://exalate.com/partners

