
How to Configure Script Runner listener to
subscribe to EXALATED event
Last Modified on 12/30/2025 7:51 am EST

JIRA ON-PREMISE

With Script Runner you can set up triggers to perform actions when issues have been Exalated.
Let's assume we would like to trigger a sync back, once the issue has been exalated and modify
our issue in some way. Let's say we would like a Mood custom field to be set to 'Happy' and a
description of an issue to be 'Created from the Script Runner'. In order to achieve this one can
easily configure a custom Script Listener to subscribe to the EXALATED Jira event.

To configure a Script Runner to subscribe to an EXALATED Jira event:

1. Install a Script Runner plugin for Jira:

2. After a successful installation navigate to the Script Listeners section of the Script Runner
plugin:

3. Pick Custom listener from the list. This takes you to the page where you can actually

http://docs.exalate.com/docs/search?phrase=:Jira+on-premise

create your custom listener:

4. Pick up the desired project from a dropdown list and choose a
'com.exalate.api.domain.trigger.EXALATED' event type from the list:

5. Next step would be to write your custom listener script. It is written using Groovy
language. Here's an example of such a script. The actual implementation can change
depending on the JIRA version.

1 import com.atlassian.jira.event.issue.AbstractIssueEventListener
2 import com.atlassian.jira.event.issue.IssueEvent
3 import com.atlassian.jira.event.type.EventType
4 import com.atlassian.jira.event.type.EventTypeManager
5 import com.atlassian.jira.issue.Issue
6
7 import org.slf4j.Logger
8 import org.slf4j.LoggerFactory
9
10 class DefaultAccountListener extends AbstractIssueEventListener {
11
12 private final Logger LOG = LoggerFactory.getLogger(DefaultAccountListener)
13
14 private static final String EXALATED_EVENT_TYPE = "com.exalate.api.domain.trigger.EXALATED"
15 private static final String EXALATE_UPDATED_EVENT_TYPE = "com.exalate.api.domain.trigger.UPDATED"
16
17 @Override
18 void customEvent(IssueEvent event) {
19 Issue issue = event.issue
20 EventType eventType = eventTypeManager.getEventType(event.getEventTypeId())
21 LOG.debug("Custom event caught for issue ${issue.key}: type [${eventType.type}], name [${eventTyp
e.name}], nameKey [${eventType.nameKey}]")
22
23 if (eventType.name.equalsIgnoreCase(EXALATED_EVENT_TYPE)) {
24 LOG.debug("EXALATED event caught for issue ${issue.key}")
25 }
26 }
27 }

6. Save the listener, then navigate to an issue you'd like to Exalate and perform an Exalate
operation:

7. Now let's wait until the synchronization is performed (there is a lozenge on the right side
which indicates the state of the synchronization):

8. Once the issue has been Exalated, refresh the page and check whether the changes were
applied:

We can see that the Mood has been changed to 'Happy' and that the description has changed
as well.

Product

About Us �

Release History �

Glossary �

API Reference �

Security �

Pricing and Licensing �

Resources

Subscribe for a weekly Exalate hack �

Academy �

Blog �

YouTube Channel �

Ebooks �

Still need help?

Join our Community �

Visit our Service Desk �

Find a Partner �

https://exalate.com/who-we-are
http://docs.exalate.com/docs/release-history
http://docs.exalate.com/docs/glossary
http://docs.exalate.com/docs/exalate-api-reference-documentation
http://docs.exalate.com/docs/security
http://docs.exalate.com/docs/pricing-licensing
https://exalate.com/hack/?utm_campaign=ExalateHack&utm_medium=docs&utm_source=docs_home_page
https://exalate.com/academy
https://exalate.com/blog
https://www.youtube.com/@exalate-integration
https://exalate.com/ebooks-and-whitepapers/
https://community.exalate.com
https://exalate.atlassian.net/servicedesk/customer/portal/5
https://exalate.com/partners

