
How to Use a Store(Issue) Function
Last Modified on 04/15/2024 4:29 am EDT

JIRA CLOUD AZURE DEVOPS ZENDESK SERVICENOW SALESFORCE

This article describes how to use a store(issue) function that is available starting from versions
5.0.87.1 and 5.1.4 and up. The store(issue) function can be added to the Incoming script rules for
multiple purposes. It allows performing multiple consecutive operations within one
synchronization. Here is an example of how to use the store(issue) function to define the order of
the operations that are being performed.

Incoming script rules

if (firstSync) {
 issue.projectKey = "FOO"
 issue.typeName = "Task"
 issue.summary = "Hello there"
 store(issue) // creates the issue with only project, type and summary
}
issue.setStatus("In Progress")
store(issue) // transitions the issue to "In Progress"
issue.comments = commentHelper.mergeComments(issue, replica) // adds comments after changing the status of th
e issue

Another example of multiple operations:

Incoming script rules

issue.comments = commentHelper.addComment("Let's start progress", issue.comments)
issue.setStatus("In Progress")
store(issue)

issue.fixVersions = nodeHelper.getVersion("1.0.0", issue.project)
issue.setStatus("In Review")
store(issue)

issue.resolution = nodeHelper.getResolution("Fixed")
issue.setStatus("Resolved")
store(issue)

Sometimes workflow configuration in Jira does not let you make changes under certain
circumstances, like, for example, when the issue is closed. To make changes to the issue in this
case it is required to open the issue first. This is when the store(issue) function becomes a handy
solution. Exalate will check the issue status and will act accordingly. Depending on the issue status
the ordering of the actions will differ.

Incoming script rules

http://docs.exalate.com/docs/search?phrase=:Jira+Cloud
http://docs.exalate.com/docs/search?phrase=:Azure+DevOps
http://docs.exalate.com/docs/search?phrase=:Zendesk
http://docs.exalate.com/docs/search?phrase=:ServiceNow
http://docs.exalate.com/docs/search?phrase=:Salesforce

if (replica.status.name == "Closed" && issue.status.name != "Closed") {
 issue.description = replica.description
 store(issue) // first update the issue
 issue.setStatus("Closed") // then close it, because you won't be able to modify closed issues
}

else if (replica.status.name != "Closed" && issue.status.name == "Closed") {
 issue.setStatus(replica.status.name)
 store(issue) // first reopen the issue
 issue.description = replica.description // then update it, because you won't be able to modify issues which are still cl
osed
}

Another valuable outcome is that the store(issue) function creates an issue ID that can be useful
when creating REST API requests using this issue ID. If the store(issue) is not present in the
scripting rules, the issue ID won't get created to be used in REST API calls. Otherwise, by adding
the store(issue) function in the script you can customize the scripting rules further by using the
issue ID.

Incoming script rules

issue.summary = "Summary"
issue.typeName = "Story"
issue.projectKey = "PROJA"
store(issue)// creates an issue ID
def issueId = issue.id // now it's guaranteed not to be empty
def votes = new JiraClient(httpClient).http("GET", "/rest/api/3/issue/${issueId}/votes", [:], null, [:]) { response ->
 if (response.code >= 300 && response.code != 404) {
 throw new com.exalate.api.exception.IssueTrackerException("Failed to perform the request GET /rest/api/3/issu
e/${issue.id}/votes (status ${response.code}), and body was: \n\"response.body\"\nPlease contact Exalate Support: ".
toString() + response.body())
 }
 if (response.code == 404) {
 return null
 }
 def responseStr = response.body as String
 responseStr ?
 new groovy.json.JsonSlurper().parseText(responseStr) as Map<String, Object>
 : null;
}?.votes

Product

About Us 

Release History 

Glossary 

API Reference 

Security 

Pricing and Licensing 

Resources

Subscribe for a weekly Exalate hack 

Academy 

Blog 

YouTube Channel 

Ebooks 

Still need help?

Join our Community 

Visit our Service Desk 

Find a Partner 

https://exalate.com/who-we-are
http://docs.exalate.com/docs/release-history
http://docs.exalate.com/docs/glossary
http://docs.exalate.com/docs/exalate-api-reference-documentation
http://docs.exalate.com/docs/security
http://docs.exalate.com/docs/pricing-licensing
https://exalate.com/hack/?utm_campaign=ExalateHack&utm_medium=docs&utm_source=docs_home_page
https://exalate.com/academy
https://exalate.com/blog
https://www.youtube.com/@exalate-integration
https://exalate.com/ebooks-and-whitepapers/
https://community.exalate.com
https://exalate.atlassian.net/servicedesk/customer/portal/5
https://exalate.com/partners

