
How to Install Exalate for GitHub on Docker
Last Modified on 04/08/2025 4:01 pm EDT

GITHUB INSTALLATION DOCKER

You can host Exalate for GitHub on your own server. To do so, you need to install Exalate on
Docker.

Note: You need to install Docker. Check the docker documentation for more details.

Steps to Install Exalate for GitHub on Docker

1. Create directory and create docker-compose.yml file

Create a directory to hold the docker-compose file:

cd ~
mkdir exalate-gitnode

Create a docker-compose.yml file

Important: We recommend using the latest version of Exalate for GitHub. It can be found in
the Release History.

Enter the latest version in the image tag. For example, in image: idalko/githubnode:5.23.0 , the
version of Exalate for GitHub is 5.23.0 .

The docker-compose.yml file should contain the following information in it:

http://docs.exalate.com/docs/search?phrase=:GitHub
http://docs.exalate.com/docs/search?phrase=:installation
http://docs.exalate.com/docs/search?phrase=:docker
https://docs.docker.com/
https://docs.exalate.com/docs/github-92f86e5

services:
 database:
 restart: unless-stopped
 image: postgres:15.12
 volumes:
 - ./persist/db:/var/lib/postgresql/data
 - ./createdb.sh:/docker-entrypoint-initdb.d/init-user-db.sh
 environment:
 - POSTGRES_PASSWORD=changeme
 - DB_NAME=githubnode
 - DB_USER=exalate
 - DB_PASS=exalate
 networks:
 - dbnet

 githubnode:
 restart: unless-stopped
 ports:
 - 9002:9002

 #
 # Change the image tag to the required version
 # Check Release History on docs.exalate.com for an overview
 #
 image: idalko/githubnode:5.23.0
 depends_on:
 - database #wait for postgres to be started, not for ready
 volumes:
 - ./persist/home:/opt/githubnode/data
 environment:
 # Add your environment settings here
 - GITHUBNODE_PG_HOST=database
 - GITHUBNODE_PG_DB=githubnode?gssEncMode=disable
 - GITHUBNODE_PG_USER=exalate
 - GITHUBNODE_PG_PWD=exalate
 - GITHUBNODE_PORT=9002

 #As part of the security improvements, Exalate 5.6.0 and above validates the origin header
 #that the browser is sending upon every request to Exalate.
 #In order to validate the origin header, Exalate needs to know what is the URL
 #leading to it.
 #When you deploy Exalate onto a server, you configure a DNS rule such that
 #whenever people navigate to foo.com, they reach your server's Exalate.
 #You set up SSL so that https://foo.com leads to your Exalate on your server. once this is done you need to set an environment variable NODE_SELF_URL=https://foo.co
m
 #for your Exalate docker container.

 - NODE_SELF_URL=https://foo.com

 # You can use following variables to link the node with nginx proxy
 # Replace exa-git.exalate.biz with the appropriate FQDN
 # - LETSENCRYPT_HOST=exa-git.exalate.biz
 # - VIRTUAL_HOST=exa-git.exalate.biz
 # - VIRTUAL_PORT=9002
 # To hanlde SSL termination we suggest following this article https://docs.exalate.com/docs/scripts-how-to-bring-up-a-reverse-proxy-using-the-jwildernginx-proxy

 # CACHE_EXPIRY_DURATION_HOURS variable defines how long the cache will remain in the app.
 # The default value of 8 hours can be changed by specifying the number of hours.
 # - CACHE_EXPIRY_DURATION_HOURS=20

 networks:
 - dbnet
 - default

networks:
 dbnet:
 driver: bridge
 default:
 driver: bridge

Note: the - GITNODE_PG_DB= and - DB_NAME= must match in order to start the db correctly.

Connecting to Postgres 10 or Higher

For unencrypted connections from Exalate to a Postgres version 10 or higher, you need to disable
gssEncMode with the following setting:

exalate is the name of the database on the postgres instance
#
GITHUBNODE_PG_DB=exalate?gssEncMode=disable

2. Ensure that a correct database is setup using a createdb.sh

Create or download a createdb.sh file (referenced from docker-compose.yml):

Note: Click to download the file.createdb.sh

https://foo.com
https://foo.com
https://docs.exalate.com/docs/scripts-how-to-bring-up-a-reverse-proxy-using-the-jwildernginx-proxy
https://dyzz9obi78pm5.cloudfront.net/app/image/id/6374dd1939a8ff597d7b6563/n/createdb.sh

The file must be executable and should contain the following information:

#!/bin/bash

TEST=`psql -U postgres <<-EOSQL
 SELECT 1 FROM pg_database WHERE datname='$DB_NAME';
EOSQL`

echo "******CREATING DOCKER DATABASE******"
if [[$TEST == "1"]]; then
 # database exists
 # $? is 0
 exit 0
else
psql -U postgres <<-EOSQL
 CREATE ROLE $DB_USER WITH LOGIN ENCRYPTED PASSWORD '${DB_PASS}' SUPERUSER;
EOSQL

psql -U postgres <<-EOSQL
 CREATE DATABASE $DB_NAME WITH OWNER $DB_USER ENCODING 'UNICODE' LC_COLLATE 'C' LC_CTYPE 'C' TEMPLATE template0
;
EOSQL

psql -U postgres <<-EOSQL
 GRANT ALL PRIVILEGES ON DATABASE $DB_NAME TO $DB_USER;
EOSQL
fi

echo ""
echo "******DOCKER DATABASE CREATED******"

Ensure that the volumes are included in your backup strategy:

persist

3. Set Environment Variables if necessary

Below, you can find the environment variables used for the app container. All are optional, and in
the given example, we've overridden GITHUBNODE_PG_DB, GITHUBNODE_PG_USER, and
GITHUBNODE_PG_PWD just to show how to pass different credentials to the Exalate application.

 Full list of environment variables:

Variable name Default value Example Description

GITHUBNODE_PG_HOST GITHUBNODE_PG_HOST=database GITHUBNODE_PG_HOST=db.acme.com

Tells the exalate application
where is the postgres
database to connect to
hosted

GITHUBNODE_PG_DB GITHUBNODE_PG_DB=exalate GITHUBNODE_PG_DB=exalate

Tells the exalate application
what is the postgres
database name for the
exalate application

GITHUBNODE_PG_USER GITHUBNODE_PG_USER=idalko GITHUBNODE_PG_USER=exalate

Tells the exalate application
what is the postgres
database username for the
exalate application to
perform queries with

GITHUBNODE_PG_PWD GITHUBNODE_PG_PWD=idalko GITHUBNODE_PG_PWD=secret

Tells the exalate application
what is the postgres
database user's password for
the exalate application to
perform queries with

GITHUBNODE_PORT GITHUBNODE_PORT=9000 GITHUBNODE_PORT=8080

Tells what which is the port
to start the exalate
application on. Note that this
is the port within the
exalategitnode_githubnode_1
container, thus if this
variable is changed (for
example to 80), the

 ports:
 - 9000:9000

should also be changed to

 ports:
 - 8080:8080

GITHUBNODE_SMTP_HOST_NAME GITHUBNODE_SMTP_HOST_NAME=mail.server.com GITHUBNODE_SMTP_HOST_NAME=smtp.gmail.com
Is used to send email
notifications about errors
blocking synchronization

GITHUBNODE_SMTP_PORT GITHUBNODE_SMTP_PORT=465 GITHUBODE_SMTP_PORT=587
is used to send email
notifications about errors
blocking synchronization

GITHUBNODE_SMTP_FROM GITHUBNODE_SMTP_FROM=admin@admin.com GITHUBNODE_SMTP_FROM=my.name@gmail.com
Is used to send email
notifications about errors
blocking synchronization

GITHUBNODE_SMTP_USER GITHUBNODE_SMTP_USER=admin GITHUBNODE_SMTP_USER=my.name
Is used to send email
notifications about errors
blocking synchronization

GITHUBNODE_SMTP_PASS GITHUBNODE_SMTP_PASS=1234567 GITHUBNODE_SMTP_PASS=secret
Is used to send email
notifications about errors
blocking synchronization

GITHUBNODE_SMTP_TLS GITHUBNODE_SMTP_TLS=true GITHUBNODE_SMTP_TLS=true

Is used to send email
notifications about errors
blocking synchronization.
Can be set to false, but then
the
GITHUBNODE_SMTP_PORT
should be set to the port,
that accepts non-SSL and
non-TLS connections

HTTP_HEADERS n/a HTTP_HEADERS="TestName1: testAddHeader1"

Allows additional information
to pass between the clients
and the server through the
request header.

FEATURE_AI_ASSIST_ENABLED n/a FEATURE_AI_ASSIST_ENABLED=true

Switches on AI Assist feature
in Exalate admin console.
When enabled, users can use
Exalate AI to generate sync
rules.
*The AI Assist feature
requires a real-time
internet connection

Variable name Default value Example Description

Using a Proxy for Outgoing Connections

Whenever the Exalate node needs to use a proxy to establish outgoing connections, use the
following parameters in the environment (naming should be obvious):

PROXY_HTTP_HOST
PROXY_HTTP_PORT
PROXY_HTTPS_HOST
PROXY_HTTPS_PORT

4. Start the Application

cd ~/exalate-gitnode
docker-compose up -d

Verify the installation

After performing these steps and checking that the container is up, you should be able to access
the Exalate console via http://localhost:9302

Note: You might need to set up local port forwarding in order to get this to work.

5. Register the Node

To be able to fully use the functionality of your new node, it needs to be registered on the mapper.
 This mapper acts as a DNS server, mapping tracker URLs to node URLs.

Please raise a ticket on the support portal providing the following:

URL of the GitHub instance
URL of the Exalate node which has been deployed on premise

How to Manage the Application on Docker

Run Queries to the Application's Database

cd ~/exalate-gitnode
docker exec -it exalate-gitnode_database_1 bash
su postgres
psql -A $DB_NAME

You can find all tables using PSQLs \dt+ command:

\dt+

All the Postgres SQL queries are permitted

To exit the application's DB:

https://www.ssh.com/academy/ssh/tunneling/example
https://exalate.atlassian.net/servicedesk/customer/portal/5

\q
\q exits the psql
exit
exits the postgres user session
exit
exits the exalate-gitnode_database_1 bash session

Inspect the Application's Filesystem

cd ~/exalate-gitnode
docker exec -it exalate-gitnode_githubnode_1 bash

Remove the application

cd ~/exalate-gitnode
docker-compose rm

Remove the application data

Warning: Do this only if you want to delete all the synchronization information, including the
current synchronizations enqueued to be performed, and synchronization status. Ensure that
the remote side you exalate issues with knows that you're stopping synchronization and are
ready to handle synchronization errors.

cd ~/exalate-gitnode
docker volume ls | grep exalate-gitnode_vol |  awk '{ print $2 }' | xargs docker volume r
m
docker volume rm exalate-gitnode_voldatabase
docker volume rm exalate-gitnode_volgithubnode

System Administration Tasks

With the Exalate for Jira Cloud is running on your environment, you are also required to do the
mandatory system administration tasks

Backup (& restore tests)
Disaster recovery procedure
Upgrades whenever needed

Note: Please note that an Exalate version has a lifespan of 2 years. This is to ensure backward
compatibility over the whole platform. There are regular new versions deployed which contain
bug fixes, security-related improvements, and even new features. Watch the release notes
page for any new versions.

Upgrading Exalate on Docker

If you need to upgrade Exalate on Docker, here are the steps to follow:

1. Edit the YAML File :

Open the docker-compose.yml file in a text editor and modify the image tag for the service you
wish to upgrade.

use the latest version https://hub.docker.com/r/idalko/githubnode
image: idalko/githubnode:latest
depends_on:
- database #wait for postgres to be started, not for ready

Replace latest with the latest or desired version tag.

2. Pull the Latest Image :

From the directory containing your docker-compose.yml file, pull the latest image.

docker-compose pull

3. Recreate the Container:

https://docs.exalate.com/docs/azure-devops-2e236be

Using Docker Compose, you can easily recreate the container with the new image.

docker-compose up -d

The -d flag runs the containers in detached mode. Docker Compose automatically stops the
old container and starts a new one based on the updated image.

4. Post-Upgrade Checks:

After starting the upgraded container, check to make sure everything is running as expected:

Log into the Exalate interface and verify that all your configurations, connections are
intact.
Test out a few synchronizations to make sure they work as expected.
Check for any errors in the Docker logs or the Exalate logs.

Troubleshooting

Issues during the installation of the Exalate server for GitHub

If you have issues during the installation of the Exalate app for GitHub, you can find logs
describing possible problem inside /tmp .

The name for the file is generated randomly and automatically by the OS, but you can find the file
by the creation date.

Issues while running the Exalate server for GitHub

Logs are generated under the directory: /opt/githubnode/data/logs .

Refer to these logs to get more information about possible issues and communicate with our
support if you need any assistance.

Support

Check our Support options.

ON THIS PAGE

Product

About Us 

Release History 

Glossary 

API Reference 

Security 

Pricing and Licensing 

Resources

Subscribe for a weekly Exalate hack 

Academy 

Blog 

YouTube Channel 

Ebooks 

Still need help?

Join our Community 

Visit our Service Desk 

Find a Partner 

https://exalatedocs.knowledgeowl.com/docs/support
https://exalate.com/who-we-are
http://docs.exalate.com/docs/release-history
http://docs.exalate.com/docs/glossary
http://docs.exalate.com/docs/exalate-api-reference-documentation
http://docs.exalate.com/docs/security
http://docs.exalate.com/docs/pricing-licensing
https://exalate.com/hack/?utm_campaign=ExalateHack&utm_medium=docs&utm_source=docs_home_page
https://exalate.com/academy
https://exalate.com/blog
https://www.youtube.com/@exalate-integration
https://exalate.com/ebooks-and-whitepapers/
https://community.exalate.com
https://exalate.atlassian.net/servicedesk/customer/portal/5
https://exalate.com/partners

