
Comment Visibility - an Advanced Issue Sync Case
Last Modified on 03/25/2024 11:23 am EDT

JIRA ON-PREMISE

Introduction

Warning: Despite our best efforts, code can change without notice due to a variety of factors.
If you encounter an issue in any of the code shown here and find that a specific block of code
is not correct, or is causing errors, please check with the Community to find an updated
version.

One of our customers is using Exalate for an advanced use case, where comments need to be
handled differently based on the context in which they are created.

Challenge

There are 2 instances and 4 projects at play

External Instance (label JSD)
with one service management project
Internal Instance (Label INT) with 3 projects
Internal service management and 2 dev projects: dev project A and dev project B

Requirements

The comment-related requirements are:

Comments on the external service management need to go to the internal service
management and ripple through to the dev projects
Comments on the dev project(s) should only go to the internal service management project

http://docs.exalate.com/docs/search?phrase=:Jira+on-premise
http://community.exalate.com

but not to the external service management
Comments from the dev project on the internal service management must be restricted,
while the comments from the internal service management on the dev project must be open
If a comment is made on dev project A, then it should not ripple through to dev project B or
the original ticket (on the external service management)

Understanding the Challenge

There are 3 types of comments:

Ticket comments made by customers on the external service management
Service management comments made by support engineers on the internal service
management
Dev comments made by developers on the dev project

This table depicts the required behavior whenever a comment is made on one project, how it
needs to be synced to the twin issue
(The column is the source)

Comment
Sync
Behavior
Map (From/To)

External
Service
management

Internal
Service
management

Dev Project
A

Dev Project
B

External Service
management

Restricted Open Open

Internal Service
management

Open Open Open

Dev Project A Not allowed Restricted Not Allowed

Dev Project B Not Allowed Restricted Not Allowed

Filtering out the Comments which should not be Exchanged

To meet the requirements

Comments on the external service management need to go to the internal service
management and ripple through to the dev projects
If a comment is made on dev project A, then it should not ripple through to dev project B or
the original ticket
Comments on the dev project should only go to the internal service management project but
not to the external service management

The approach we choose was to have 3 different synchronization users. These are functional
accounts that define the connection which created the comment

SyncJSD (which is the proxy user)
SyncCon1
SyncCon2

The incoming sync processor of the internal connections has the following logic to impersonate
the comment

The Incoming sync processor of the connections contains the following statement:

// set the author of the twin comment to SyncCon1

issue.comments = commentHelper.mergeComments(issue, replica, {
 comment ->
 comment.executor = nodeHelper.getUserByUsername("SyncCon1")
 comment
 })

Note: In the second connection, you would use SyncCon2.

And in the outgoing sync processor, you exclude the comments which are exchanged over the
other connection as follows

replica.comments = issue.comments.findAll { comment ->
 comment.author.username == "SyncCon1" ||
 !comment.author.username.contains("SyncCon")
 }

Note: Change the name to SyncCon2 for the second connection.

Why Would this Work?

Whenever a comment is made on the internal service management project, it is either created by
a user, the SyncJSD user (when it comes from the external connection), the SyncCon1 or the
SyncCon2 user (when it comes from the dev projects). The
statement !comment.author.username.contains("SyncCon") filters out all comments that are
created in the other dev project, but all other comments pass through.

Whenever a comment is created by the SyncJSD user (ie the customer comment), the
comment.author.username is 'SyncJSD', and included in the sync message from the internal
service management to both development projects, as it passes the condition.

Ok - the First Hurdle Met - What's Next?
Comments from the dev project on the internal service management must be restricted,
while the comments from the internal service management on the dev project must be open

The way to restrict the comment is explained in 'How to manage comment visibility'. By setting

https://exalatedocs.knowledgeowl.com/docs/how-to-manage-comment-visibility-in-jira-on-premise

the comment.role level (check the comment object to the appropriate role, comments are
restricted. The challenge here is to apply this change only to the internal service management
project and not to the dev project.

The additional complexity is that there are multiple internal service management projects (kept
this for last). We decided to use the category to indicate the nature of the project. You could also
use other ways of finding out what the type of project it is, but this approach allows us to
demonstrate how one can work around a gap in the exalate product. Currently, there is no
category in the project object. As we don't have the time for the exalate team to update the
product, we can apply the following workaround

// fetch the project category using the Jira API
import com.atlassian.jira.component.ComponentAccessor
def projectManager = ComponentAccessor.projectManager
def jProject = projectManager.getProjectByCurrentKey(issue.projectKey)
def jCategory = jProject.projectCategoryObject

// If the category is 'Service management', set the role level to 'Team', else null

issue.comments = commentHelper.mergeComments(issue, replica, {
 comment ->
 comment.roleLevel = (jCategory.name == "Service management") ? "Team" : null
 comment.executor = nodeHelper.getUserByUsername("SyncCon1")
 comment
 })

Conclusion

You can create advanced synchronization use cases by combining the flexibility of Exalate with
the capabilities of Jira.

ON THIS PAGE

Introduction

Challenge

Requirements

Understanding the Challenge

Filtering out the Comments which should not be

Exchanged

Ok - the First Hurdle Met - What's Next?

Conclusion

Product

About Us

Release History

Glossary

API Reference

Security

Pricing and Licensing

Resources

Academy

Blog

YouTube Channel

Ebooks

Still need help?

Join our Community

Visit our Service Desk

Find a Partner

https://exalatedocs.knowledgeowl.com/docs/comment-structure
https://exalatedocs.knowledgeowl.com/docs/project-structure
http://docs.exalate.com/#Introduction0
http://docs.exalate.com/#Challenge1
http://docs.exalate.com/#Requirements2
http://docs.exalate.com/#UnderstandingtheChallenge3
http://docs.exalate.com/#FilteringouttheCommentswhichshouldnotbeExchanged4
http://docs.exalate.com/#OktheFirstHurdleMetWhatsNext5
http://docs.exalate.com/#Conclusion6
https://exalate.com/who-we-are
http://docs.exalate.com/docs/release-history
http://docs.exalate.com/docs/glossary
http://docs.exalate.com/docs/exalate-api-reference-documentation
http://docs.exalate.com/docs/security
http://docs.exalate.com/docs/pricing-licensing
https://exalate.com/academy
https://exalate.com/blog
https://www.youtube.com/@exalate-integration
https://exalate.com/ebooks-and-whitepapers/
https://community.exalate.com
https://exalate.atlassian.net/servicedesk/customer/portal/5
https://exalate.com/partners

