
Local Synchronization
Last Modified on 02/17/2025 9:30 am EST

JIRA

Local Synchronization Use Case

Warning: Despite our best efforts, code can change without notice due to a variety of factors.
If you encounter an issue in any of the code shown here and find that a specific block of code
is not correct, or is causing errors, please check with the Community to find an updated
version.

You can use local synchronization when you have two projects in one Jira. Let's take a look at the
case when you have the following projects: DEVELOPER and TESTER.

There are two different scenarios:

you create a task for the developer and send the task to the tester
you found a bug, created the Failed test, and then sent the task to the developer to fix it

Let's take a look at the example for the first scenario.

1. Create the task for the developer by clicking the Create button.
2. When the developer starts working on a task, he sees the status 'IMPLEMENT'.
3. After finishing the work, the developer sends it to the tester, and the developer's task
changes to the 'IN TESTING' status. By the way, Exalate creates a test on the TESTER side
with the status 'TO DO'.
4. The tester starts working and his status becomes 'TESTING'.
5. Then, the tester can move the task to 'OK' or 'FAILURE' depending on the test result. If he
finds a bug, he moves it to 'FAILURE', and Exalate changes the developer's status to 'TO DO'
again. After that, all the transitions repeat until the work is done. If the test is passed, the
transition 'OK' leads to the status 'OK' and Exalate does its work to inform the developer that

http://docs.exalate.com/docs/search?phrase=:Jira
http://community.exalate.com

everything is finished by marking the developer's status as 'DONE'. The reverse process is
very similar.

It's easy to make all the transitions possible work automatically if you use the Exalate add-on.

How Does it Work?

You need to create two projects in your Jira: DEVELOPER and TESTER.

To set up synchronization for the use case above, you need to configure your Jira instance and the
Exalate application.

Workflows

Now you can start to create Workflows.

Add the DEVELOPER workflow for the DEVELOPER project and the TESTER workflow for TESTER.

After that, create the statuses and transitions that you need.

Note: In Jira, click the status or transition to edit it.

Don't forget to add these workflows to your project and publish them every time you make
changes.

Automatic Synchronization

First of all, when the status changes to 'To testing', Exalate should create the test. To make it
possible, you should add Triggers that look like this:

It means that if you create a task on the developer's side when you send it on testing, your status
is 'IN TESTING', Exalate starts its work and creates the test on another side.

The second trigger means that you created a test on the TESTER side. If the project is Tester and
the status is Failure, then Exalate makes a task for the developer to fix bugs.

Hidden Transitions

If you look at the screenshots above, you see some transitions the user should not see. For
instance, the user cannot say that work is done, while his status is 'IN TESTING'. Only Exalate can
do it. So we should hide some transitions. This is how you do it:

1. Click the Done transition and add a condition on the right side.
2. Select User Is In Group from the list and find a group you need.

Do the same for the transition 'Implement' in the DEVELOPER workflow and transition 'To Do' in
the TESTER workflow in this case.

Local Connection

The last step for setting up Exalate is to create an Exalate Connection. You need to name it and
choose the remote issue you created, for example, DEV-TEST. The Outgoing sync should contain
scripts to compose a message with data you want to send to the other side.

replica.key = issue.key
replica.assignee = issue.assignee
replica.reporter = issue.reporter
replica.summary = issue.summary
replica.description = issue.description
replica.comments = issue.comments
replica.resolution = issue.resolution
replica.status = issue.status
replica.attachments = issue.attachments
replica.workLogs = issue.workLogs
replica.project = issue.project
replica.type = issue.type

The Incoming sync handles a message from the reporting node and creates an issue on the
second side of the first time. This way Exalate would know that if the Task was created first, then it
should create a Test on the other side, and vice versa.

if(replica.type.name == "Task") {
 issue.projectKey = "TESTERS"
 issue.typeName = "Test"
 workflowHelper.transition(issue, "To Do")
}
else{
 issue.projectKey = "DEVELOPERS"
 issue.typeName = "Task"
}

issue.status = replica.status
issue.summary = replica.summary
issue.description = replica.description
issue.comments = commentHelper.mergeComments(issue, replica)
issue.attachments = attachmentHelper.mergeAttachments(issue, replica)
issue.workLogs = workLogHelper.mergeWorkLogs(issue, replica)

The Incoming sync can then process and update values. It contains something like this:

if(replica.project.key == "TESTERS" && replica.status.name == "FAILURE"){
 workflowHelper.transition(issue, "Implement")
}
if(replica.project.key == "DEVELOPERS" && replica.status.name == "IN TESTING"){
 workflowHelper.transition(issue, "To Do")
}
if(replica.project.key == "TESTERS" && replica.status.name == "OK"){
 workflowHelper.transition(issue, "Done")
}
issue.summary = replica.summary
issue.description = replica.description
issue.comments = commentHelper.mergeComments(issue, replica)
issue.attachments = attachmentHelper.mergeAttachments(issue, replica)
issue.workLogs = workLogHelper.mergeWorkLogs(issue, replica)

ON THIS PAGE

Product

About Us �

Release History �

Glossary �

API Reference �

Security �

Pricing and Licensing �

Resources

Subscribe for a weekly Exalate hack �

Academy �

Blog �

YouTube Channel �

Ebooks �

Still need help?

Join our Community �

Visit our Service Desk �

Find a Partner �

https://exalate.com/who-we-are
http://docs.exalate.com/docs/release-history
http://docs.exalate.com/docs/glossary
http://docs.exalate.com/docs/exalate-api-reference-documentation
http://docs.exalate.com/docs/security
http://docs.exalate.com/docs/pricing-licensing
https://exalate.com/hack/?utm_campaign=ExalateHack&utm_medium=docs&utm_source=docs_home_page
https://exalate.com/academy
https://exalate.com/blog
https://www.youtube.com/@exalate-integration
https://exalate.com/ebooks-and-whitepapers/
https://community.exalate.com
https://exalate.atlassian.net/servicedesk/customer/portal/5
https://exalate.com/partners

