
How to Sync Comments in Azure DevOps Server &
Service
Last Modified on 10/21/2025 2:26 am EDT

AZURE DEVOPS COMMENTS SYNCHRONIZE

This article shows how to synchronize comments.

You can handle comments in different ways:

merge local and received comments (this is a default behavior)
filter comments
format received comments

Source Side

Outgoing sync

You can decide which comments to share:

Synchronize comments that have no group or role level assign

replica.comments = commentHelper.filterLocal(issue.comments)

Service Desk: Synchronize only public comments

replica.comments = issue.comments.findAll{!it.internal}

Make sure the customer request type is assigned to the issue that you are synchronizing.

Send only comments created by a certain user

//send only Luke Skywalker's comments
replica.comments = issue.comments.findAll { comment -> comment.author.displayName == "Luke Skywalker" }

Destination Side

Incoming sync

You can perform the following actions on comments locally:

merge local and remote comments
add remote comments
filter: add comments created by a specific user
format comments using custom formatting

You can add new comments and keep the existing comments updated using mergeComments
comment helper. This method would prepend the comment content with the author of the original
comment. This is the default behavior.

http://docs.exalate.com/docs/search?phrase=:Azure+DevOps
http://docs.exalate.com/docs/search?phrase=:comments
http://docs.exalate.com/docs/search?phrase=:synchronize
https://exalatedocs.knowledgeowl.com/docs/mergecomments-6226066

issue.comments = commentHelper.mergeComments(issue, replica)

Apply received comments without custom formatting

The comment is added just with the body from the original comment, without the author of the
original comment.

issue.comments = commentHelper.mergeComments(issue, replica, {it})

Create received comments as internal

issue.comments = commentHelper.mergeComments(issue, replica, {it.internal = true})

Add comments every time the comment on the remote side was edited

This is an example of a case, where comments editing is disabled, but you still want to get
updates every time the remote comment was updated.

issue.comments += replica.addedComments

Manipulate the comments via helper methods

With the help of commentHelper methods, you can manipulate comments and define how to apply
received comments on the local issue.

// Format each remote comment - add the author

issue.comments = commentHelper.mergeComments(issue, replica,
 {
 comment ->
 comment.body =
 "[" + comment.author.displayName +
 "| email: " + comment.author.email + "]" +
 " commented: \n" +
 comment.body + "\n"
 }
)

Gather statistics from comments

This is an example of groovy collection methods usage. It helps to get better control over the
collection contents.

def numberOfCommentsPerAuthors = issue.comments.inject([:]) { result, comment ->
 def numberOfCommentsPerAuthor = result[comment.author.key]
 numberOfCommentsPerAuthor = numberOfCommentsPerAuthor ?: 0
 result[comment.author.key] = numberOfCommentsPerAuthor + 1
 result
}

Example for a comment list if you use the script above

https://exalatedocs.knowledgeowl.com/docs/commenthelper-in-script-helpers
http://docs.groovy-lang.org/latest/html/groovy-jdk/java/util/Collection.html

 [

 [author:[key:"luke.skywalker"], body:"I'm a jedi knight, like my father before me"],

 [author:[key:"darth.vader"], body:"I am your father!"],

 [author:[key:"luke.skywalker"], body:"Noooooooooo!"]

]

numberOfCommentsPerAuthors would be ["luke.skywalker" : 2,"darth.vader" : 1]

Product

About Us �

Release History �

Glossary �

API Reference �

Security �

Pricing and Licensing �

Resources

Subscribe for a weekly Exalate hack �

Academy �

Blog �

YouTube Channel �

Ebooks �

Still need help?

Join our Community �

Visit our Service Desk �

Find a Partner �

https://exalate.com/who-we-are
http://docs.exalate.com/docs/release-history
http://docs.exalate.com/docs/glossary
http://docs.exalate.com/docs/exalate-api-reference-documentation
http://docs.exalate.com/docs/security
http://docs.exalate.com/docs/pricing-licensing
https://exalate.com/hack/?utm_campaign=ExalateHack&utm_medium=docs&utm_source=docs_home_page
https://exalate.com/academy
https://exalate.com/blog
https://www.youtube.com/@exalate-integration
https://exalate.com/ebooks-and-whitepapers/
https://community.exalate.com
https://exalate.atlassian.net/servicedesk/customer/portal/5
https://exalate.com/partners

