
How to Sync Status using External Scripts in Jira
On-premise
Last Modified on 03/26/2024 6:44 am EDT

JIRA ON-PREMISE

This page shows how to synchronize issue statuses in Jira on-premise bi-directionally. You can
map workflows between two JIRA Instances or set the transition manually.

JIRA requires an issue status update by progressing this issue through the different workflow
steps. You can achieve it in different ways:

Manually model every step
Using any one type of transitions
Automatically progress to the correct status using advanced groovy scripting

Exalate provides different approaches to configure status synchronization when workflow
transitions are global or there's only one transition to get to the right status:

control the transition applied to your local issue
map statuses between instances

Configuration

Let's consider you already have the Connection configured between two JIRA Instances.

Now you need to configure status synchronization

Map Statuses

EXALATE FROM 4.7.3

Outgoing sync

To send the status use the code below

replica.status = issue.status

Destination side

Incoming sync

def statusMap = ["Done": "Resolved", "In Progress": "In Action"] // ["remote status name": "local status name"]
def remoteStatusName = replica.status.name
issue.setStatus(statusMap[remoteStatusName] ?: remoteStatusName)

if the status is the same on both sides you can just do:

issue.status = replica.status

EXALATE FROM 4.7.2 AND LOWER

http://docs.exalate.com/docs/search?phrase=:Jira+on-premise
http://docs.exalate.com/exalate/display/ED/Converting+remote+status+changes+to+local+comments+in+Exalate+for+Jira+on-premise

1. Create files from the Exalate public repository

Note: We store external scripts for Jira Server in a public repository. Copy the code from the
repositories below and create .groovy files. You must keep the file name as below.

Status.groovy

2. Upload the files to the $JIRA_HOME/scripts directory

3. Configure Sync Rules with the scripts provided below:

Add the snippets below to the end of the Sync Rules.

Source side

Outgoing sync

Status.send()

Destination side

Incoming sync

Add the code to a new line at the bottom of the incoming sync rules block.

1. If statuses are the same on both sides, use this code:
Status.receive()

2. If the statuses are different, use this code with your status mapping
Status.receive(useRemoteStatusByDefault = true, workflowMapping = [
 "Remote Status A" : "Local Status A",
 "Remote Status B" : "Local Status B",
 "Remote Status C" : "Local Status C",
], resolutionMapping = [:])

Include Status.receive(..) at the end on the incoming processor. Any other changes coded
after it gets ignored.

Status.receive has the following parameters:

https://stash.idalko.com/projects/EESFJS/repos/exalate-external-scripts-library-for-jira-server/raw/Status.groovy?at=refs%252Fheads%252Fmaster

//default parameters
Status.receive(useRemoteStatusByDefault = true, workflowMapping = [:], resolutionMapping = [:])

useRemoteStatusByDefault = true
Use the remote status by default.

Status.receive(useRemoteStatusByDefault = true, workflowMapping = [:], resolutionMapping = [:]) // Exalate will
 look for a local status with the same name as the incoming status
 or
Status.receive(useRemoteStatusByDefault = false, workflowMapping = [:], resolutionMapping = [:])

workflowMapping = [:]
Defines the status mapping as on the example below

Status.receive(
 useRemoteStatusByDefault = true,
 workflowMapping = [
 "Remote Status A" : "Local Status A",
 "Remote Status B" : "Local Status B",
 "Remote Status C" : "Local Status C",
],
 resolutionMapping = [:]
)

resolutionMapping = [:]
Defines resolution mapping as on the example below

Status.receive(
 useRemoteStatusByDefault = false,
 workflowMapping = [:],
 resolutionMapping = ["Remote Resolution A": "Local Resolution A"
])

Control the Transition applied to your Local Issue

Source side

Outgoing sync

To send the status use the code below

replica.status = issue.status

Destination side

Incoming sync

workflowHelper.transition method allows you to set a local transition based on the remote issue
status.

//if the local issue status is 'In Progress' and the remote issue status is 'Resolved' use 'Resolve' transition

if (issue.status?.name == "In Progress" && replica.status.name == "Resolved") {
 workflowHelper.transition(issue, "Resolve")
}

https://exalatedocs.knowledgeowl.com/docs/transition-as-executor-7733375

In case you need to set different transitions depending on the remote status you need to add the
script for each transition separately. Check the example below:

//if the local issue status is 'In Progress' and the remote issue status is 'Resolved' use 'Resolve' transition

if (issue.status?.name == "In Progress" && replica.status.name == "Resolved") {
 workflowHelper.transition(issue, "Resolve")
}

//if the local issue status is 'Done' and the remote issue status is 'Resolved' use 'Close' transition

if (issue.status?.name == "Done" && replica.status.name == "Resolved") {
 workflowHelper.transition(issue, "Close")
}

ON THIS PAGE

Product

About Us

Release History

Glossary

API Reference

Security

Pricing and Licensing

Resources

Academy

Blog

YouTube Channel

Ebooks

Still need help?

Join our Community

Visit our Service Desk

Find a Partner

http://docs.exalate.com/#0
https://exalate.com/who-we-are
http://docs.exalate.com/docs/release-history
http://docs.exalate.com/docs/glossary
http://docs.exalate.com/docs/exalate-api-reference-documentation
http://docs.exalate.com/docs/security
http://docs.exalate.com/docs/pricing-licensing
https://exalate.com/academy
https://exalate.com/blog
https://www.youtube.com/@exalate-integration
https://exalate.com/ebooks-and-whitepapers/
https://community.exalate.com
https://exalate.atlassian.net/servicedesk/customer/portal/5
https://exalate.com/partners

