
How to Sync Versions in Jira Cloud
Last Modified on 04/09/2024 10:15 am EDT

JIRA CLOUD SYNCHRONIZATION VERSIONS

This article shows how to sync fix versions between Jira instances.

Jira version is an object that includes the following elements:

version name
version start date
version release date
version description

Basic versions synchronization involves receiving versions from a remote Jira instance. Usually,
these versions don't exist on your local Jira. Exalate provides a way to create versions from the
scripts to handle this situation. To create a new version on your system when necessary use
nodeHelper.createVersion. The example below shows how you can set up such behavior.

Source Side

Outgoing sync

send fix versions

//send the fix versions set on a synced issue
replica.fixVersions = issue.fixVersions
replica.affectedVersions = issue.affectedVersions

Destination Side

Incoming sync

Create the versions that do not exist on your side.

// for the create processor, be sure that the project is set to the issue variable before running the following code
issue.projectKey = "Foo" //Included only on create processor
...

// assign fix versions from JIRA A to JIRA B
issue.fixVersions = replica
 .fixVersions
 // ensure that all the fixVersions are available on B
 .collect { v -> nodeHelper.createVersion(issue, v.name, v.description) }
// assign affected versions from JIRA A to JIRA B
issue.affectedVersions = replica
 .affectedVersions
 .collect { v -> nodeHelper.createVersion(issue, v.name, v.description) }

If you do not want exalate to create new versions but just use existing ones that match the other
side versions:

http://docs.exalate.com/docs/search?phrase=:Jira+Cloud
http://docs.exalate.com/docs/search?phrase=:synchronization
http://docs.exalate.com/docs/search?phrase=:versions
https://exalatedocs.knowledgeowl.com/docs/createversion-10354878

// for the create processor, be sure that the project is set to the issue variable before running the following code
issue.projectKey = "Foo" //Included only on create processor
...

// assign fix versions from JIRA A to JIRA B
def project = nodeHelper.getProject(issue.projectKey)
issue.fixVersions = replica
 .fixVersions
 // ensure that all the fixVersions are available on B
 .collect { v -> nodeHelper.getVersion(v.name, project) }
 .findAll{it != null}
// assign affected versions from JIRA A to JIRA B
issue.affectedVersions = replica
 .affectedVersions
 .collect { v -> nodeHelper.getVersion(v.name, project) }
 .findAll{it != null}

If you want to synchronize version start date, release date and description you can use the
external script versions.groovy, which has been developed specifically for such cases.

ON THIS PAGE

Source Side

Destination Side

Product

About Us

Release History

Glossary

API Reference

Security

Pricing and Licensing

Resources

Subscribe for a weekly Exalate hack

Academy

Blog

YouTube Channel

Ebooks

Still need help?

Join our Community

Visit our Service Desk

Find a Partner

https://exalatedocs.knowledgeowl.com/docs/versionsgroovy
http://docs.exalate.com/#SourceSide0
http://docs.exalate.com/#DestinationSide1
https://exalate.com/who-we-are
http://docs.exalate.com/docs/release-history
http://docs.exalate.com/docs/glossary
http://docs.exalate.com/docs/exalate-api-reference-documentation
http://docs.exalate.com/docs/security
http://docs.exalate.com/docs/pricing-licensing
https://exalate.com/hack/?utm_campaign=ExalateHack&utm_medium=docs&utm_source=docs_home_page
https://exalate.com/academy
https://exalate.com/blog
https://www.youtube.com/@exalate-integration
https://exalate.com/ebooks-and-whitepapers/
https://community.exalate.com
https://exalate.atlassian.net/servicedesk/customer/portal/5
https://exalate.com/partners

