
How to Measure Exalate Performance - the Ping
Pong Test
Last Modified on 03/04/2024 11:10 am EST

PING PONG TEST

Introduction

The performance of Exalate depends on many different factors as it depends on many different
components:

the underlying trackers exalate is integrating with
The machines hosting the Exalate instance (when deployed outside of the tracker)
The network layout between the two different environments and the quality of the network
connection
The type and size of information that is being exchanged
The complexity of the mapping and transformation of the synchronization

The ping pong test has been set up to have a benchmark such that any performance regression
can be highlighted as these occur. This test also acts as a load test to check how the solution
behaves under load.

Environment Setup

The left Jira has 2 projects

Ping Pong Source (PPS)
Ping Pong Target (PPT)

http://docs.exalate.com/docs/search?phrase=:Ping+Pong+Test

The right Jira has 1 project

Ping Pong Wall (PPW)

The source has a set of 1000 issues, containing a mix of comments and attachments of various
sizes. The Jira Data Generator add-on (here) can be used to create such projects.

The Ping Pong test

The ping pong test will validate:

The Exalate operation (which brings an issue 'under sync')
The sync back operation (which triggers a message back)
The trigger operation (which automatically Exalates an issue)
The Update operation (by updating the description this change needs to be applied to the
target)
The Unexalate operation (which severe the synchronization tie between two issues)

The Flow of a Single Issue

The issue keys and project keys are different in the actual test

Description Effect on PPS
(left)

Effect on PPW
(right)

Effect
on
PPT
(left)

Exalate
function

1
PPS-1 gets exalated
using the ping_pong
connection

- - - Exalate

2
This creates an issue
PPW-2 (on right jira)

- create PPW-2 Create issue

3
The trigger on right Jira
picks up the create
event of PPW-2

- - -

synclistener
captures
create
event

4

PPW-2 gets exalated
using the
ping_pong_part2
connection

- - -

trigger on
PPW
executes an
exalate

https://marketplace.atlassian.com/apps/1210725/data-generator-for-jira

5
This creates on issue
PPT-3 (on the left jira)

create
PPT-2

create issue

6
The ping_pong_part2 has
a syncback, an update
syncevent is scheduled

- - -

Syncback is
scheduling
an update
event

7
The incoming sync on
PPW-2 updates a custom
field 'Remote Key'

Field 'Remote
Key' is
updated with
'PPT-2'

issue is
updated
properly

8
The update is triggering
a syncevent on the ping
pong connection

- - -

synclistener
captures
update
event

9

The ping_pong
connection updates the
custom field 'Remote
Key'

Field 'Remote
Key' is
updated with
'PPT-2'

- -
the issue is
updated
properly

Description Effect on PPS
(left)

Effect on PPW
(right)

Effect
on
PPT
(left)

Exalate
function

There are in total 9 exalate operations performed for one cycle.

Setting Up the Test

To configure the test, you will need to setup the following:

Jira A and Jira B
Both on-premise
Both have Exalate deployed

The projects

PPS (Source - Jira A - Project Management configuration)

Project type

PPW (Wall - Jira B - Project Management configuration)
PPT (Target - Jira A - Project Management configuration)
Additionally - on every project a custom field 'Remote Key' of type 'single line text'

The Ping Connection

Jira A
 Jira A - Ping Connection - Outgoing sync

The log.info is to collect the timestamps.

import java.sql.Timestamp

replica.key = issue.key
replica.type = issue.type
replica.assignee = issue.assignee
replica.reporter = issue.reporter
replica.summary = issue.summary
replica.description = issue.description
replica.labels = issue.labels
replica.comments = issue.comments
replica.resolution = issue.resolution
replica.status = issue.status
replica.parentId = issue.parentId
replica.priority = issue.priority
replica.attachments = issue.attachments
replica.project = issue.project

//Comment these lines out if you are interested in sending the full list of versions and components of the
source project.
replica.project.versions = []
replica.project.components = []

log.info("PINGPONG - PING OUT - ${issue.key} - [${new Date().time}]")

/*
Custom Fields

replica.customFields."CF Name" = issue.customFields."CF Name"
*/

 Jira A - Ping Connection - Incoming sync

if(firstSync){
 // do not create on the outgoing path
 return
}

log.info("PINGPONG - PING IN - ${issue.key} - [${new Date().time}]")
issue.summary = replica.summary
issue.description = replica.description
issue.labels = replica.labels
issue.comments = commentHelper.mergeComments(issue, replica)
issue.attachments = attachmentHelper.mergeAttachments(issue, replica)
issue.customFields."Remote Key".value = replica.customKeys.pongissue

Jira B

 Jira B - Ping Connection - Outgoing Sync
replica.key = issue.key
replica.type = issue.type
replica.assignee = issue.assignee
replica.reporter = issue.reporter
replica.summary = issue.summary
replica.description = issue.description
replica.labels = issue.labels
replica.comments = issue.comments
replica.resolution = issue.resolution
replica.status = issue.status
replica.parentId = issue.parentId
replica.priority = issue.priority
replica.attachments = issue.attachments
replica.project = issue.project
replica.customKeys.pongissue = issue.customFields."Remote Key".value

//Comment these lines out if you are interested in sending the full list of versions and components of the
source project.
replica.project.versions = []
replica.project.components = []

 Jira B - Ping Connection - Outgoing sync
if(firstSync){
 issue.projectKey = "PPW"
 issue.typeName = "Task"
}
issue.summary = replica.summary
issue.description = replica.description
issue.labels = replica.labels
issue.comments = commentHelper.mergeComments(issue, replica)
issue.attachments = attachmentHelper.mergeAttachments(issue, replica)

The Pong Connection

Jira A
 Jira A - Pong Connection - Outgoing Sync

replica.key = issue.key
replica.type = issue.type
replica.assignee = issue.assignee
replica.reporter = issue.reporter
replica.summary = issue.summary
replica.description = issue.description
replica.labels = issue.labels
replica.comments = issue.comments
replica.resolution = issue.resolution
replica.status = issue.status
replica.parentId = issue.parentId
replica.priority = issue.priority
replica.attachments = issue.attachments
replica.project = issue.project

//Comment these lines out if you are interested in sending the full list of versions and components of the
source project.
replica.project.versions = []
replica.project.components = []

//replica.customKeys.foo = new Date()

/*
Custom Fields

replica.customFields."CF Name" = issue.customFields."CF Name"
*/

 Jira A - Pong Connection - Incoming Sync
if(firstSync){
 issue.projectKey = "PPT"
 // Set type name from source issue, if not found set a default
 issue.typeName = "Task"

 // report back the issue key of the created issue
 syncHelper.syncBackAfterProcessing()
}
issue.summary = replica.summary
issue.description = replica.description
issue.labels = replica.labels
issue.comments = commentHelper.mergeComments(issue, replica)
issue.attachments = attachmentHelper.mergeAttachments(issue, replica)

Jira B

 Jira B - Pong connection - Outgoing sync

replica.key = issue.key
replica.type = issue.type
replica.assignee = issue.assignee
replica.reporter = issue.reporter
replica.summary = issue.summary
replica.description = issue.description
replica.labels = issue.labels
replica.comments = issue.comments
replica.resolution = issue.resolution
replica.status = issue.status
replica.parentId = issue.parentId
replica.priority = issue.priority
replica.attachments = issue.attachments
replica.project = issue.project

//Comment these lines out if you are interested in sending the full list of versions and components of the
source project.
replica.project.versions = []
replica.project.components = []

 Jira B - Pong Connection - Incoming sync
issue.summary = replica.summary
issue.description = replica.description
issue.labels = replica.labels
issue.comments = commentHelper.mergeComments(issue, replica)
issue.attachments = attachmentHelper.mergeAttachments(issue, replica)

// the update of the custom field will trigger an update event on the ping connection back to source
issue.customFields."Remote Key".value = replica.key

An active trigger that Exalates issues over the pong connection which are created on the PPW
project

Running the Test

Start an exalate on a subset of issues on project PPS by creating a trigger (with a JQL) and
choosing Bulk Exalate.

Inspect the logging (exalate.log in the <jira-home>/logs directory).
Grep on the string 'PINGPONG' - it will reveal the timestamps.

What can you expect?
As stated in the introduction, there are many components at play that will influence the
outcome of the performance test.
Our baseline, used in the regression tests, is to process on average 300 issues in an hour
(2700 synchronization transactions)

ON THIS PAGE

Introduction

Environment Setup

The Ping Pong test

The Flow of a Single Issue

Running the Test

What can you expect?

Product

About Us 

Release History 

Glossary 

API Reference 

Security 

Pricing and Licensing 

Resources

Academy 

Blog 

YouTube Channel 

Ebooks 

Still need help?

Join our Community 

Visit our Service Desk 

Find a Partner 

http://docs.exalate.com/#Introduction0
http://docs.exalate.com/#EnvironmentSetup1
http://docs.exalate.com/#2
http://docs.exalate.com/#ThePingPongtest3
http://docs.exalate.com/#TheFlowofaSingleIssue4
http://docs.exalate.com/#RunningtheTest5
http://docs.exalate.com/#Whatcanyouexpect6
https://exalate.com/who-we-are
http://docs.exalate.com/docs/release-history
http://docs.exalate.com/docs/glossary
http://docs.exalate.com/docs/exalate-api-reference-documentation
http://docs.exalate.com/docs/security
http://docs.exalate.com/docs/pricing-licensing
https://exalate.com/academy
https://exalate.com/blog
https://www.youtube.com/@exalate-integration
https://exalate.com/ebooks-and-whitepapers/
https://community.exalate.com
https://exalate.atlassian.net/servicedesk/customer/portal/5
https://exalate.com/partners

