
Configuration FAQs
Last Modified on 04/22/2024 10:25 am EDT

Is it possible to pause synchronization for maintenance purposes?

Yes, you can pause the synchronization. Synchronization events are queued while a Connection is
deactivated. You can later resume the synchronization from the moment it was stopped.

Can the configuration evolve independently?

Thanks to the distributed architecture, it is possible to adapt the common hub issue (or replica) to
the local context. For instance, if your local workflow evolves, you will be able to change the
Incoming Sync Rules to take into account the new configuration. 

How does the engine ensure that attachments are sent over correctly?

When an instance requests another instance to send over the content of an attachment, the other
instance will respond with a hash key calculated from the content of the attachment. The same
hash key is calculated on the receiving end to ensure that the received content matches the
original attachment. The download will be retried once to avoid transmission errors. Failing this
second attempt an error is raised and the administrator is notified.

Can you upgrade your own environment without affecting any remote
configurations?

Exalate is based on a distributed architecture where each application administrator configures
what information can be sent and how incoming messages must be handled. All messages
exchanged between the instances are based on a commonly defined 'hub issue' or replica which
carries all the information one application administrator wants to communicate to the other side.
The processors will use this information to apply the changes to the local issues.

Is it possible to transition an issue whenever a certain comment is given?

Yes. With the help of groovy-based script rules, you can parse the newly added comments and
trigger a resolve transition

# Resolve the issue when a comment contains the word 'Resolve'
#
def resolveComments = replica.addedComments.findAll { comment -> comment.body.contains("Resolve")}
if(resolveComments.size() > 0) {
   workflowHelper.transition(issue,"Resolve")
}

How difficult is it to configure a complex scenario?

A scenario we encounter regularly is the Service Desk use case where tickets raised by a
customer need to be raised internally in different projects - depending on the set of properties.
One use case was particularly interesting. The target project depended on 3 different properties
resulting in 200+ potential permutations. This mapping is stored in a single database table.



The way we solved it, involves finding the right projectkey in the database table and using it to
raise the issue in the right project. Check the following example showing how this behavior can be
configured using Exalate.

Is it possible to synchronize contextual data of an issue (such as project,
version, and user information)?

Yes. A hub issue contains all contextual data allowing you to implement complex business logic.
Check out the detailed information a hub issue message transports such as:

Project
Version 
User

How long does it take to process all synchronization events when 10000
issues in 100 different projects have been updated?

The synchronization engine is processing sync events sequentially. Processing 10000 issues in
100 different projects might take a couple of hours. We have been synchronizing 10k+ issues as
part of our performance tests and we are looking at increasing the processing speed to meet the
performance challenges.

Can the configuration of the local platform change without impacting the
configuration of the other platforms?

Yes. Each integration point can evolve as long as the hub issue model and Exalate API are
respected.

How long does it take to synchronize an issue, when 10 other issues under
sync have been updated at the same time?

This happens immediately. Exalate is based on a fully event-driven engine. Whenever a user
changes some information and that information needs to be sent, a sync event is generated
containing a snapshot of the modified issue - ready to be sent to the remote instance. When 10
issues are changed, or 1 issue is changed10 times, at the same moment - 10 events are
generated.

The replication layer in the Exalate architecture will transmit each sync event to the remote
instance, triggering a sync request, which is processed at its own pace.

Handling a full synchronization event takes a couple of seconds (give/take the size of the
information to be transmitted)

How is the troubleshooting process supported?

Whenever an error occurs, a detailed overview is raised. It leads to the problem and we call it the
stack trace. In case this is not sufficient, you can create a support.zip file and send it to
support@exalate.com for further processing.



Is Exalate compatible with any reverse-proxy solutions?

Since Exalate is an app for different deployments of Jira (Server, Cloud, Data Center) and other
platforms, we do not attempt to ensure that our application is compatible with all third-party
reverse-proxy solutions that might be set up on the Jira host. 
However, we've tested it with nginx, and we can state that Exalate is compatible with nginx as a
reverse-proxy server.

How are the system administrators notified in case an error is raised?

The group of Exalate administrators will be notified in 2 different ways

by email with the details of the error notification.

In JIRA - by using 'In-JIRA' notifications - popping up a warning about the blocking error.

Also, errors are generated at 4 different levels.

Issue or entity 

As an example - when the proxy user is not allowed to modify the local issue due to
issue security

Relation

Typical example - when there is an error in the processor scripts, or when there is a
permission problem to apply changes to an entity

Instance

A connection problem

Node

Bugs in the synchronization layer.

What happens if I change the project key which is under sync?

Whenever a user changes something in an issue, Jira will notify Exalate about the change by
generating an update event. If the issue is under an update gets synchronized. However, changing
the key does not trigger such an event. 

To synchronize a key change, the issue under sync needs to be touched by modifying something
or by adding a comment in order to synchronize that information change.

Additional considerations when changing the project key

Review the Incoming sync to make sure that the old project key is not hard coded.
Review the triggers and update the JQL if this is relevant.



Is it possible to sync multiple projects to one using one Connection? 

Yes, it's possible to sync multiple projects with one Connection. 

Basically, it's all about the configuration of the Sync Rules. Once you establish a connection
between instances you can specify which data you would like to send to the other side and how to
interpret incoming data.

The Outgoing sync rules of the sending side interact with the Incoming sync rules of the receiving
side. For more details, please check the synchronization processors.

The short name has a space, how to reference it in the script rules (Visual
Mode)?

Assume that you created a connection with a shortname that has a space like 'Public Cloud'

def pcIssue = on["""Public Cloud"""]

pcIssue.customFields."Request Type".value = "Restart Server"

What is the difference between issue.type and issue.type.name?

One of the most important details when configuring synchronization between multiple Jira
Instances is the issue type field.

Jira issue.type is an object with a set of properties such as name, id, etc.

When syncing the issue type you can send the whole object or issue.type.name string property
(issue.type object property).

Below you can see examples of the scripts that help to sync issue types in different ways.

Sync Rules include issue type sync by default. You can adapt the script to your needs.

Source Side

Outgoing sync

Send the issue.type object(This script is included in the default sync rules).

replica.type = issue.type

Send issue.typeName string property

replica.typeName = issue.type.name

Destination Side

Incoming sync



Set an issue.typeName to Task for all incoming issues

issue.typeName = replica.type?.name ?: "Task"

Set an issue.type for incoming issues as received from the source side

issue.typeName = replica.typeName

How to retrieve all the bindings presented to a processor?

Add the following code at the beginning of the processor

def bindings = context.getBindings(100)
def result = ""
bindings.each { result += "<b>$it.key</b><br>$it.value?.properties<br><hr><p>" }
debug.error("Bindings = ${result}")

This will generate an error for you to see the results.

Is it possible to migrate from Visual Mode to Script Mode?

No, it's not possible to migrate from Visual to Script Mode. 

Only Connections in the Basic Mode can be upgraded to Script or Visual.

Product

About Us 

Release History 

Glossary 

API Reference 

Security 

Pricing and Licensing 

Resources

Subscribe for a weekly Exalate hack 

Academy 

Blog 

YouTube Channel 

Ebooks 

Still need help?

Join our Community 

Visit our Service Desk 

Find a Partner 

https://exalate.com/who-we-are
http://docs.exalate.com/docs/release-history
http://docs.exalate.com/docs/glossary
http://docs.exalate.com/docs/exalate-api-reference-documentation
http://docs.exalate.com/docs/security
http://docs.exalate.com/docs/pricing-licensing
https://exalate.com/hack/?utm_campaign=ExalateHack&utm_medium=docs&utm_source=docs_home_page
https://exalate.com/academy
https://exalate.com/blog
https://www.youtube.com/@exalate-integration
https://exalate.com/ebooks-and-whitepapers/
https://community.exalate.com
https://exalate.atlassian.net/servicedesk/customer/portal/5
https://exalate.com/partners

