
How to Sync Attachments in HP ALM/QC
Last Modified on 04/09/2024 5:02 am EDT

HP ALM/QC SYNCHRONIZATION ATTACHMENTS

Warning: We are moving Exalate for HP QC/ALM into basic maintenance mode. This transition
period will last until November 2024, after which support will be halted completely. For more
information, please see https://exalate.com/blog/end-of-support-hp/.

This article describes how to synchronize attachments.

With Exalate, you have full control over attachment synchronization. You can define the sync
behavior for attachments in different ways. For example:

filter what attachments to send by file type or size
sync attachments from the public comments only

The maximum attachment size that you can synchronize depends on a couple of factors:

 the attachment size limit on both instances (you can configure the max attachment size in
Jira)
instance HTTP/HTTPS connection timeouts

We've tested the synchronization of attachments with the size up to 1 GB, which worked without
any issues, bigger attachments should not be a problem either.

Source side

When sending attachments, you need to remember, that not all the attachments have to be sent
over.
You can use the groovy collection methods to control the collection contents:

Outgoing sync

Send all the attachments

replica.attachments = issue.attachments

Send only .pdf files

replica.attachments = issue.attachments.findAll { attachment -> attachment.filename.endsWith(".pdf") }

Send only attachments mentioned in public comments and handle names with special
characters

http://docs.exalate.com/docs/search?phrase=:HP+ALM%252FQC
http://docs.exalate.com/docs/search?phrase=:synchronization
http://docs.exalate.com/docs/search?phrase=:attachments
https://exalate.com/blog/end-of-support-hp/
http://docs.groovy-lang.org/latest/html/groovy-jdk/java/util/Collection.html

def isMentionedInPublicComments(attachment, publicComments) {
 publicComments?.any {c ->
 c.body.contains("[^" + attachment.filename + "]") ||
 (c.body =~ (/!${java.util.regex.Pattern.quote(a.filename)}(\|.*!|!)/.toString())).find()
 }
}
replica.attachments = issue.attachments.findAll{isMentionedInPublicComments(it, publicComments)}

Destination side

Incoming sync

You can define how to create issue attachments, received from the other side.

Check some examples below:

Merge attachments using attachmentHelper.mergeAttachments . It's is the most common
case, which is included in the default sync rules.

//add all new attachments as listed in the replica and remove all attachments from the issue which have been remove
d in the remote issue
issue.attachments = attachmentHelper.mergeAttachments(issue, replica)

Create new attachments, received from the source side

 issue.attachments.addAll(replica.addedAttachments)
// or issue.attachments += replica.addedAttachments

Add all received attachments to the local issue and change the attachment name. You can
manipulate attachments via groovy collection methods to apply any specific behavior.

issue.attachments.addAll(replica.addedAttachments)
issue.attachments = issue.attachments.collect {attachment ->
 attachment.filename = "node_A_" + attachment.filename
 // return an attachment
 attachment
}

Gather statistics from the attachments

https://docs.idalko.com/exalate/display/ED/mergeAttachments
http://docs.groovy-lang.org/latest/html/groovy-jdk/java/util/Collection.html

 def numberOfAttachmentsPerTypes = issue.attachments.inject([:]) { result, attachment ->
 def getFileExt = {
 filename -> def lastDotIdx = filename.lastIndexOf("."); (lastDotIdx > 0)? filename.substring(lastDotIdx) : null
 }
 def fileExt = getFileExt(attachment.filename)
 def numberOfAttachmentsPerType = result[fileExt]
 numberOfAttachmentsPerType = numberOfAttachmentsPerType ?: 0
 result[fileExt] = numberOfCommentsPerAuthor + 1
 result
}
/*
for attachments:[
 [
 filename:"foo.pdf"
],
 [
 filename:"bar.txt"
],
 [
 filename:"baz.pdf"
],
 [
 filename:"hahaha"
]
]
 numberOfAttachmentsPerTypes would be [".pdf" : 2,".txt" : 1, null : 1]
*/

Make the issue attachments the same as the ones received from the remote instance

This removes all the attachments, which are not present on the remote issue replica. Use with
caution.

issue.attachments = replica.attachments

Have more questions? Ask the community

Product

About Us

Release History

Glossary

API Reference

Security

Pricing and Licensing

Resources

Subscribe for a weekly Exalate hack

Academy

Blog

YouTube Channel

Ebooks

Still need help?

Join our Community

Visit our Service Desk

Find a Partner

https://community.exalate.com/
https://exalate.com/who-we-are
http://docs.exalate.com/docs/release-history
http://docs.exalate.com/docs/glossary
http://docs.exalate.com/docs/exalate-api-reference-documentation
http://docs.exalate.com/docs/security
http://docs.exalate.com/docs/pricing-licensing
https://exalate.com/hack/?utm_campaign=ExalateHack&utm_medium=docs&utm_source=docs_home_page
https://exalate.com/academy
https://exalate.com/blog
https://www.youtube.com/@exalate-integration
https://exalate.com/ebooks-and-whitepapers/
https://community.exalate.com
https://exalate.atlassian.net/servicedesk/customer/portal/5
https://exalate.com/partners

